Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emotional memory study reveals evidence for a self-reinforcing loop

09.03.2005


Researchers exploring the brain structures involved in recalling an emotional memory a year later have found evidence for a self-reinforcing "memory loop" -- in which the brain’s emotional center triggers the memory center, which in turn further enhances activity in the emotional center.

The researchers said their findings suggest why people subject to traumatic events may be trapped in a cycle of emotion and recall that aggravates post-traumatic stress disorder (PTSD). They said their findings also suggest why therapies in which people relive such memories and reshape perspective to make it less traumatic can help people cope with such memories.

The paper by Florin Dolcos, Kevin LaBar and Roberto Cabeza, was published online February 9, 2005, in the Proceedings of the National Academy of Sciences. The researchers are in Duke University’s Center for Cognitive Neuroscience, Department of Psychological and Brain Sciences, and Brain Imaging and Analysis Center. Their work was sponsored by the National Institutes of Health and the National Science Foundation.



"This study is the first to really test recall of emotional memories after a long time period," said Cabeza. "Previous studies had only allowed a short time interval, for example minutes, between encoding of the memory and retrieval. Hence, they could not distinguish between the process called consolidation -- in which memories are being established -- and retrieval. Also, they did not distinguish between true recollection of a memory and a vague familiarity. In memory studies, it’s very important to distinguish between these two phenomena," he said.

In their study, the researchers showed volunteer subjects images that were pleasant, unpleasant or neutral while their brains were being scanned with functional magnetic resonance imaging (fMRI). In this widely used technique, harmless magnetic fields and radio waves are used to image blood flow in regions of the brain, and increased blood flow is a signature of higher brain activity. The pleasant images were of romantic scenes and sports; the unpleasant images involved injured people and violence, and the neutral pictures depicted buildings or other emotionally non-involving scenes. The subjects were asked to rate the emotional aspects of the images they saw.

Then, a year later, the researchers showed the same subjects a combination of images they had previously seen and new images -- pleasant, unpleasant and neutral -- while their brains were being scanned. They asked the subjects to indicate whether they had seen the images before and whether the memory also brought back associated details. Such details indicated the impact of the picture on the subjects.

The researchers found that the subjects did recall the emotional pictures -- both pleasant and unpleasant -- better than the neutral pictures, and this recall was based on specific recognition of the pictures. This recall was associated with a correlated higher activity in both the amygdala -- the region of the brain responsible for processing emotional memories -- as well as the hippocampus, the main memory-processing center. The study also revealed greater amygdala-hippocampal correlation during recollection of emotional pictures than during recollection of neutral pictures, they said. The researchers said that one way of explaining the "co-activation" of these two centers was that they could be part of a "synergistic mechanism," in which each activates the other during recall of an emotional memory.

Said Dolcos, "One way to interpret our result is that emotion can trigger recollection, and vice versa. The synchronicity between activity in the amygdala and hippocampus could go either way. The emotion enhances recollection, but at the same time by recollecting those events, you would also remember the emotional response. It could be like a loop in which the amygdala interacts with the hippocampus." According to Dolcos, this memory loop could help understand the searing recall of traumatic memories in people with post-traumatic stress disorder.

"In such people, an emotional cue could trigger recall of the event, which would then loop back to a re-experiencing of the emotion of the event," said Dolcos. "Or, remembering the event may trigger the emotional reaction associated with the event, which in turn could trigger more intense recall, in a continuous loop."

Such insights into the nature of emotional memory support a therapeutic process that can affect "reconsolidation" of traumatic memories, said Cabeza. "Some studies have suggested that when you retrieve a memory it can not only be re-encoded, or reconsolidated, but you also put it into a labile state in which it can be transformed. While in such labile state, either the memory itself or the person’s perspective of it may be altered." According to Cabeza, therapists working with people suffering from PTSD as a result of the 9/11 terrorist attack have used this technique to alleviate its symptoms.

In further studies, the researchers plan to manipulate the degree of emotion experienced by the subjects, as well as how much detail is remembered, to explore the specific interactions among brain structures in processing emotional memories. They also plan to analyze activity of other regions -- such as those that process spatial, auditory, or visual information -- during emotional memory processing to understand their role. Such studies would yield insights into how emotional memories involve integrating multiple brain regions, they said.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>