Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emotional memory study reveals evidence for a self-reinforcing loop

09.03.2005


Researchers exploring the brain structures involved in recalling an emotional memory a year later have found evidence for a self-reinforcing "memory loop" -- in which the brain’s emotional center triggers the memory center, which in turn further enhances activity in the emotional center.

The researchers said their findings suggest why people subject to traumatic events may be trapped in a cycle of emotion and recall that aggravates post-traumatic stress disorder (PTSD). They said their findings also suggest why therapies in which people relive such memories and reshape perspective to make it less traumatic can help people cope with such memories.

The paper by Florin Dolcos, Kevin LaBar and Roberto Cabeza, was published online February 9, 2005, in the Proceedings of the National Academy of Sciences. The researchers are in Duke University’s Center for Cognitive Neuroscience, Department of Psychological and Brain Sciences, and Brain Imaging and Analysis Center. Their work was sponsored by the National Institutes of Health and the National Science Foundation.



"This study is the first to really test recall of emotional memories after a long time period," said Cabeza. "Previous studies had only allowed a short time interval, for example minutes, between encoding of the memory and retrieval. Hence, they could not distinguish between the process called consolidation -- in which memories are being established -- and retrieval. Also, they did not distinguish between true recollection of a memory and a vague familiarity. In memory studies, it’s very important to distinguish between these two phenomena," he said.

In their study, the researchers showed volunteer subjects images that were pleasant, unpleasant or neutral while their brains were being scanned with functional magnetic resonance imaging (fMRI). In this widely used technique, harmless magnetic fields and radio waves are used to image blood flow in regions of the brain, and increased blood flow is a signature of higher brain activity. The pleasant images were of romantic scenes and sports; the unpleasant images involved injured people and violence, and the neutral pictures depicted buildings or other emotionally non-involving scenes. The subjects were asked to rate the emotional aspects of the images they saw.

Then, a year later, the researchers showed the same subjects a combination of images they had previously seen and new images -- pleasant, unpleasant and neutral -- while their brains were being scanned. They asked the subjects to indicate whether they had seen the images before and whether the memory also brought back associated details. Such details indicated the impact of the picture on the subjects.

The researchers found that the subjects did recall the emotional pictures -- both pleasant and unpleasant -- better than the neutral pictures, and this recall was based on specific recognition of the pictures. This recall was associated with a correlated higher activity in both the amygdala -- the region of the brain responsible for processing emotional memories -- as well as the hippocampus, the main memory-processing center. The study also revealed greater amygdala-hippocampal correlation during recollection of emotional pictures than during recollection of neutral pictures, they said. The researchers said that one way of explaining the "co-activation" of these two centers was that they could be part of a "synergistic mechanism," in which each activates the other during recall of an emotional memory.

Said Dolcos, "One way to interpret our result is that emotion can trigger recollection, and vice versa. The synchronicity between activity in the amygdala and hippocampus could go either way. The emotion enhances recollection, but at the same time by recollecting those events, you would also remember the emotional response. It could be like a loop in which the amygdala interacts with the hippocampus." According to Dolcos, this memory loop could help understand the searing recall of traumatic memories in people with post-traumatic stress disorder.

"In such people, an emotional cue could trigger recall of the event, which would then loop back to a re-experiencing of the emotion of the event," said Dolcos. "Or, remembering the event may trigger the emotional reaction associated with the event, which in turn could trigger more intense recall, in a continuous loop."

Such insights into the nature of emotional memory support a therapeutic process that can affect "reconsolidation" of traumatic memories, said Cabeza. "Some studies have suggested that when you retrieve a memory it can not only be re-encoded, or reconsolidated, but you also put it into a labile state in which it can be transformed. While in such labile state, either the memory itself or the person’s perspective of it may be altered." According to Cabeza, therapists working with people suffering from PTSD as a result of the 9/11 terrorist attack have used this technique to alleviate its symptoms.

In further studies, the researchers plan to manipulate the degree of emotion experienced by the subjects, as well as how much detail is remembered, to explore the specific interactions among brain structures in processing emotional memories. They also plan to analyze activity of other regions -- such as those that process spatial, auditory, or visual information -- during emotional memory processing to understand their role. Such studies would yield insights into how emotional memories involve integrating multiple brain regions, they said.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>