Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Two brain systems regulate how we call for help

08.03.2005


The willingness to call out in distress to get help from others appears to be regulated by two brain systems with very different responsibilities, according to a study by researchers at the University of Wisconsin-Madison.



"These findings have far-reaching implications because they help clarify how a balance of two important brain systems can influence an individual’s behavior and emotional expression in times of need," says Ned Kalin, senior author on the study and chair of psychiatry at UW Medical School. "The findings suggest that how open an individual is willing to be in asking for help may depend more than we thought on how secure that individual feels at any given time in a supportive relationship."

The brain systems found to be involved were the amygdala, which is important in detecting and responding to threats, and the right prefrontal cortex, which plays a role in reaching goals and attaching to others.


The study will appear in the Proceedings of the National Academy of Sciences Online Early Edition during the week of March 7-11.

In monkeys and humans, it’s natural to seek help from supportive individuals during trying times. Indeed, calling for help can be crucial to survival, says Kalin, a psychiatrist who has studied fear and social attachment in monkeys for two decades in an attempt to better understand anxiety and depression in humans.

However, since a cry for help also signals vulnerability - and, in the animal world, may attract the attention of predators - safety may depend on being careful about when to call out for help. The UW researchers wanted to know what brain systems determine why one individual is very comfortable expressing a need for help while another is much more restrained.

The brain-imaging study involved 25 rhesus monkeys that were separated from their cage mates for 30 minutes and made "coo calls," which function to recruit others for social support. Researchers measured the frequency with which each monkey called out, and then scanned each animal’s brain with a special animal PET (positron emission tomography) scanner at UW-Madison’s Waisman Laboratory for Functional Brain Imaging and Behavior. The high-resolution scans revealed metabolic activity in precise areas of the animals’ small brains.

The scans showed that animals that called the most had more activity in the right prefrontal cortex and less in the amygdala. In contrast, those monkeys that called less frequently had less prefrontal cortex activity and more amygdala activity. "Simply measuring brain activity in these two regions allowed us to predict with nearly 80 percent accuracy how much each individual monkey called for help," says Kalin.

The researchers were somewhat surprised to find reduced activity in the amygdalas of the most vocal animals, since increased amygdala activity is associated with fear and stressful states. It would be logical to expect that the animals that were most vocal would also be the most frightened. "But in our earlier research, we showed that some monkeys will become inhibited and freeze when they’re frightened, especially when a predator is nearby and the monkey believes that it hasn’t yet been discovered by the predator," Kalin says. "We observed that the greater the fear, the less likely it was that animals would call for help, at least under certain circumstances. If you haven’t been discovered by a predator lurking nearby, it’s not a good idea to draw attention to yourself by crying out for help."

The situation may be very similar for humans, Kalin says, and may provide a framework for understanding differences in emotional expressivity. "People who are less secure and more sensitive to potential threat are likely to have increased amygdala activity that may inhibit their urge to ask for help, which is related to right prefrontal cortex activity," he says.

On the other hand, he adds, "When a person feels safe enough in a relationship to express his or her vulnerabilities, this appears to be associated with a decrease in amygdala activity and an increase in prefrontal cortex activity. As relationships become more secure for the people involved, it’s likely that changes in amygdala and prefrontal cortex activity may be responsible for the accompanying increase in sharing of intimate feelings."

Kalin believes that the degree to which a person may be willing to call for help probably depends on a variety of factors, including how frightened or threatened the person feels, what his or her general temperament is, the person’s past experiences and what kind of social support system may be in place.

Dian Land | EurekAlert!
Further information:
http://www.hosp.wisc.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>