Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study: Two brain systems regulate how we call for help


The willingness to call out in distress to get help from others appears to be regulated by two brain systems with very different responsibilities, according to a study by researchers at the University of Wisconsin-Madison.

"These findings have far-reaching implications because they help clarify how a balance of two important brain systems can influence an individual’s behavior and emotional expression in times of need," says Ned Kalin, senior author on the study and chair of psychiatry at UW Medical School. "The findings suggest that how open an individual is willing to be in asking for help may depend more than we thought on how secure that individual feels at any given time in a supportive relationship."

The brain systems found to be involved were the amygdala, which is important in detecting and responding to threats, and the right prefrontal cortex, which plays a role in reaching goals and attaching to others.

The study will appear in the Proceedings of the National Academy of Sciences Online Early Edition during the week of March 7-11.

In monkeys and humans, it’s natural to seek help from supportive individuals during trying times. Indeed, calling for help can be crucial to survival, says Kalin, a psychiatrist who has studied fear and social attachment in monkeys for two decades in an attempt to better understand anxiety and depression in humans.

However, since a cry for help also signals vulnerability - and, in the animal world, may attract the attention of predators - safety may depend on being careful about when to call out for help. The UW researchers wanted to know what brain systems determine why one individual is very comfortable expressing a need for help while another is much more restrained.

The brain-imaging study involved 25 rhesus monkeys that were separated from their cage mates for 30 minutes and made "coo calls," which function to recruit others for social support. Researchers measured the frequency with which each monkey called out, and then scanned each animal’s brain with a special animal PET (positron emission tomography) scanner at UW-Madison’s Waisman Laboratory for Functional Brain Imaging and Behavior. The high-resolution scans revealed metabolic activity in precise areas of the animals’ small brains.

The scans showed that animals that called the most had more activity in the right prefrontal cortex and less in the amygdala. In contrast, those monkeys that called less frequently had less prefrontal cortex activity and more amygdala activity. "Simply measuring brain activity in these two regions allowed us to predict with nearly 80 percent accuracy how much each individual monkey called for help," says Kalin.

The researchers were somewhat surprised to find reduced activity in the amygdalas of the most vocal animals, since increased amygdala activity is associated with fear and stressful states. It would be logical to expect that the animals that were most vocal would also be the most frightened. "But in our earlier research, we showed that some monkeys will become inhibited and freeze when they’re frightened, especially when a predator is nearby and the monkey believes that it hasn’t yet been discovered by the predator," Kalin says. "We observed that the greater the fear, the less likely it was that animals would call for help, at least under certain circumstances. If you haven’t been discovered by a predator lurking nearby, it’s not a good idea to draw attention to yourself by crying out for help."

The situation may be very similar for humans, Kalin says, and may provide a framework for understanding differences in emotional expressivity. "People who are less secure and more sensitive to potential threat are likely to have increased amygdala activity that may inhibit their urge to ask for help, which is related to right prefrontal cortex activity," he says.

On the other hand, he adds, "When a person feels safe enough in a relationship to express his or her vulnerabilities, this appears to be associated with a decrease in amygdala activity and an increase in prefrontal cortex activity. As relationships become more secure for the people involved, it’s likely that changes in amygdala and prefrontal cortex activity may be responsible for the accompanying increase in sharing of intimate feelings."

Kalin believes that the degree to which a person may be willing to call for help probably depends on a variety of factors, including how frightened or threatened the person feels, what his or her general temperament is, the person’s past experiences and what kind of social support system may be in place.

Dian Land | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>