Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab Medical Imager Spots Breast Cancer

07.03.2005


This PEM image shows two cancerous lesions. The one on the right was depicted by conventional mammography, but the one on the left was only identified by the PEM unit. Image courtesy: Eric Rosen, Duke University Medical Center


A study published in the February issue of the journal Radiology shows that a positron emission mammography (PEM) device designed and built by Jefferson Lab scientists is capable of imaging breast cancer tumors. In the pilot study, conducted by Duke University Medical Center researchers, the unit imaged 18 malignant tumors in 23 patients receiving additional screening due to suspicious mammograms.

For many women, regular mammograms allow physicians to spot breast cancer tumors as dense lumps in the breast. But mammography often fails in women who have dense breast tissue due, for instance, to genetics or scarring. According to Eric Rosen, M.D., a Duke University Medical Center physician and lead author on the study, "In women with dense breasts, it’s very hard to pick out even large anatomic abnormalities."

Stan Majewski, Jefferson Lab Detector Group Leader and principal investigator on the instrumentation part of the project, led the team that designed and built the PEM unit. He says PEM imaging works differently than mammography. It reveals breast tissue that is showing higher metabolism than other areas. "The imager we built is a functional imager. That is, it indicates something about physiology, which can be different from anatomy," he says.



To fuel rapid growth, cancer cells use more glucose (sugar) than surrounding cells. In this imaging procedure, a small dose of radioactive molecules that look like sugar, called fluorodeoxyglucose (FDG), are injected into the body, where they’re absorbed by cancerous tumors. The PEM device pinpoints tumors in the breast by detecting the location of FDG uptake. "By detecting areas that have increased glucose metabolism, you can often distinguish a cancer between normal surrounding tissue, which in general has low uptake of FDG," Dr. Rosen says.

For the study, Duke physicians recruited patients with suspicious mammograms who were scheduled for biopsies. "We recruited 23 patients that had 23 lesions that were highly suggestive of malignancy. PEM showed 20 lesions, 20 abnormalities, of which 18 were cancer and 2 were not cancer," Dr. Rosen says. The PEM unit missed three tumors, all of which were located very close to the chest wall, an area that PEM doesn’t image well. And of the 20 lesions spotted by the PEM system, one was not picked up by mammography. A subsequent biopsy revealed that this additional lesion was cancerous.

"We wanted to make a difference with this imager. Our expertise in building detectors for Jefferson Lab’s nuclear physics program allowed us to build a device that’s sensitive to the presence of the radioactive molecule, FDG," Majewski says, "And now we’re seeing the results of that. They detected an additional lesion that was not on mammography. That can directly impact patient care."

Dr. Rosen says the study was indeed a success, "What we concluded is that our PEM unit is capable of detecting cancer, it’s capable of demonstrating small breast malignancies, and that it can be performed in the breast clinic with a small dose of FDG and a very short, 5-minute acquisition time."

The Jefferson Lab/Duke team is now modifying the PEM system and imaging procedure to allow for better detection of lesions located near the chest wall. Dr. Rosen says the next step is to figure out what size and types of cancer tumors the unit is best capable of detecting, exactly how sensitive the unit is, and where it fits in the cancer screening process. "So now what we want to do is study a larger population and study a more representative population of patients," he says. The National Cancer Institute has funded a larger study that will include 200 patients to begin answering those questions.

More information:

Detection of Primary Breast Carcinoma with a Dedicated, Large-Field-of-View FDG PET Mammography Device: Initial Experience
Jefferson Lab’s Detector Group
PEM development picks up pace
Jefferson Lab Detector Technology Aids Development of Cystic Fibrosis Therapy
Thomas Jefferson National Accelerator Facility’s (Jefferson Lab’s) basic mission is to provide forefront scientific facilities, opportunities and leadership essential for discovering the fundamental structure of nuclear matter; to partner in industry to apply its advanced technology; and to serve the nation and its communities through education and public outreach. Jefferson Lab, located at 12000 Jefferson Avenue, is a Department of Energy Office of Science research facility managed by the Southeastern Universities Research Association.

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>