Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab Medical Imager Spots Breast Cancer

07.03.2005


This PEM image shows two cancerous lesions. The one on the right was depicted by conventional mammography, but the one on the left was only identified by the PEM unit. Image courtesy: Eric Rosen, Duke University Medical Center


A study published in the February issue of the journal Radiology shows that a positron emission mammography (PEM) device designed and built by Jefferson Lab scientists is capable of imaging breast cancer tumors. In the pilot study, conducted by Duke University Medical Center researchers, the unit imaged 18 malignant tumors in 23 patients receiving additional screening due to suspicious mammograms.

For many women, regular mammograms allow physicians to spot breast cancer tumors as dense lumps in the breast. But mammography often fails in women who have dense breast tissue due, for instance, to genetics or scarring. According to Eric Rosen, M.D., a Duke University Medical Center physician and lead author on the study, "In women with dense breasts, it’s very hard to pick out even large anatomic abnormalities."

Stan Majewski, Jefferson Lab Detector Group Leader and principal investigator on the instrumentation part of the project, led the team that designed and built the PEM unit. He says PEM imaging works differently than mammography. It reveals breast tissue that is showing higher metabolism than other areas. "The imager we built is a functional imager. That is, it indicates something about physiology, which can be different from anatomy," he says.



To fuel rapid growth, cancer cells use more glucose (sugar) than surrounding cells. In this imaging procedure, a small dose of radioactive molecules that look like sugar, called fluorodeoxyglucose (FDG), are injected into the body, where they’re absorbed by cancerous tumors. The PEM device pinpoints tumors in the breast by detecting the location of FDG uptake. "By detecting areas that have increased glucose metabolism, you can often distinguish a cancer between normal surrounding tissue, which in general has low uptake of FDG," Dr. Rosen says.

For the study, Duke physicians recruited patients with suspicious mammograms who were scheduled for biopsies. "We recruited 23 patients that had 23 lesions that were highly suggestive of malignancy. PEM showed 20 lesions, 20 abnormalities, of which 18 were cancer and 2 were not cancer," Dr. Rosen says. The PEM unit missed three tumors, all of which were located very close to the chest wall, an area that PEM doesn’t image well. And of the 20 lesions spotted by the PEM system, one was not picked up by mammography. A subsequent biopsy revealed that this additional lesion was cancerous.

"We wanted to make a difference with this imager. Our expertise in building detectors for Jefferson Lab’s nuclear physics program allowed us to build a device that’s sensitive to the presence of the radioactive molecule, FDG," Majewski says, "And now we’re seeing the results of that. They detected an additional lesion that was not on mammography. That can directly impact patient care."

Dr. Rosen says the study was indeed a success, "What we concluded is that our PEM unit is capable of detecting cancer, it’s capable of demonstrating small breast malignancies, and that it can be performed in the breast clinic with a small dose of FDG and a very short, 5-minute acquisition time."

The Jefferson Lab/Duke team is now modifying the PEM system and imaging procedure to allow for better detection of lesions located near the chest wall. Dr. Rosen says the next step is to figure out what size and types of cancer tumors the unit is best capable of detecting, exactly how sensitive the unit is, and where it fits in the cancer screening process. "So now what we want to do is study a larger population and study a more representative population of patients," he says. The National Cancer Institute has funded a larger study that will include 200 patients to begin answering those questions.

More information:

Detection of Primary Breast Carcinoma with a Dedicated, Large-Field-of-View FDG PET Mammography Device: Initial Experience
Jefferson Lab’s Detector Group
PEM development picks up pace
Jefferson Lab Detector Technology Aids Development of Cystic Fibrosis Therapy
Thomas Jefferson National Accelerator Facility’s (Jefferson Lab’s) basic mission is to provide forefront scientific facilities, opportunities and leadership essential for discovering the fundamental structure of nuclear matter; to partner in industry to apply its advanced technology; and to serve the nation and its communities through education and public outreach. Jefferson Lab, located at 12000 Jefferson Avenue, is a Department of Energy Office of Science research facility managed by the Southeastern Universities Research Association.

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>