Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab Medical Imager Spots Breast Cancer

07.03.2005


This PEM image shows two cancerous lesions. The one on the right was depicted by conventional mammography, but the one on the left was only identified by the PEM unit. Image courtesy: Eric Rosen, Duke University Medical Center


A study published in the February issue of the journal Radiology shows that a positron emission mammography (PEM) device designed and built by Jefferson Lab scientists is capable of imaging breast cancer tumors. In the pilot study, conducted by Duke University Medical Center researchers, the unit imaged 18 malignant tumors in 23 patients receiving additional screening due to suspicious mammograms.

For many women, regular mammograms allow physicians to spot breast cancer tumors as dense lumps in the breast. But mammography often fails in women who have dense breast tissue due, for instance, to genetics or scarring. According to Eric Rosen, M.D., a Duke University Medical Center physician and lead author on the study, "In women with dense breasts, it’s very hard to pick out even large anatomic abnormalities."

Stan Majewski, Jefferson Lab Detector Group Leader and principal investigator on the instrumentation part of the project, led the team that designed and built the PEM unit. He says PEM imaging works differently than mammography. It reveals breast tissue that is showing higher metabolism than other areas. "The imager we built is a functional imager. That is, it indicates something about physiology, which can be different from anatomy," he says.



To fuel rapid growth, cancer cells use more glucose (sugar) than surrounding cells. In this imaging procedure, a small dose of radioactive molecules that look like sugar, called fluorodeoxyglucose (FDG), are injected into the body, where they’re absorbed by cancerous tumors. The PEM device pinpoints tumors in the breast by detecting the location of FDG uptake. "By detecting areas that have increased glucose metabolism, you can often distinguish a cancer between normal surrounding tissue, which in general has low uptake of FDG," Dr. Rosen says.

For the study, Duke physicians recruited patients with suspicious mammograms who were scheduled for biopsies. "We recruited 23 patients that had 23 lesions that were highly suggestive of malignancy. PEM showed 20 lesions, 20 abnormalities, of which 18 were cancer and 2 were not cancer," Dr. Rosen says. The PEM unit missed three tumors, all of which were located very close to the chest wall, an area that PEM doesn’t image well. And of the 20 lesions spotted by the PEM system, one was not picked up by mammography. A subsequent biopsy revealed that this additional lesion was cancerous.

"We wanted to make a difference with this imager. Our expertise in building detectors for Jefferson Lab’s nuclear physics program allowed us to build a device that’s sensitive to the presence of the radioactive molecule, FDG," Majewski says, "And now we’re seeing the results of that. They detected an additional lesion that was not on mammography. That can directly impact patient care."

Dr. Rosen says the study was indeed a success, "What we concluded is that our PEM unit is capable of detecting cancer, it’s capable of demonstrating small breast malignancies, and that it can be performed in the breast clinic with a small dose of FDG and a very short, 5-minute acquisition time."

The Jefferson Lab/Duke team is now modifying the PEM system and imaging procedure to allow for better detection of lesions located near the chest wall. Dr. Rosen says the next step is to figure out what size and types of cancer tumors the unit is best capable of detecting, exactly how sensitive the unit is, and where it fits in the cancer screening process. "So now what we want to do is study a larger population and study a more representative population of patients," he says. The National Cancer Institute has funded a larger study that will include 200 patients to begin answering those questions.

More information:

Detection of Primary Breast Carcinoma with a Dedicated, Large-Field-of-View FDG PET Mammography Device: Initial Experience
Jefferson Lab’s Detector Group
PEM development picks up pace
Jefferson Lab Detector Technology Aids Development of Cystic Fibrosis Therapy
Thomas Jefferson National Accelerator Facility’s (Jefferson Lab’s) basic mission is to provide forefront scientific facilities, opportunities and leadership essential for discovering the fundamental structure of nuclear matter; to partner in industry to apply its advanced technology; and to serve the nation and its communities through education and public outreach. Jefferson Lab, located at 12000 Jefferson Avenue, is a Department of Energy Office of Science research facility managed by the Southeastern Universities Research Association.

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>