Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New slant on vision research: Neurons sensitive to viewing angle

03.03.2005


Mistakes made by human subjects in identifying the facing direction of faces, cars or meaningless objects have yielded evidence that the brain contains nerve cells, or neurons, whose job is to encode the viewing angle of objects. It is well known that certain neurons respond to color, motion, edges and other aspects of our environment. Now, University of Minnesota researchers have found that our visual cortex contains neurons that tell us, for example, whether a face is turned in our direction or not. The work adds to knowledge of how the brain collects and processes visual information leading to the recognition of objects, and it may inform the design of machine vision. The study will be published in the March 3 issue of the journal Neuron.

The brain relies on millions of neurons to report the visual elements of our environment. But, for example, if every neuron geared to motion fired in response to any motion whatsoever, then we couldn’t tell whether a train was chugging into the distance or bearing down on us. Instead, to gain a complete picture of the world, our brains appear to contain separate, but physically intertwined, populations of neurons that respond to only one small aspect of our environment. The brain then bases its interpretation of images largely on which neurons fire.

"The issue is, what is the underlying neural mechanism that supports the ability to recognize objects viewed from different angles?" said Sheng He, associate professor of psychology, who directed the study. "This study supports the idea that we have explicit representations in our brains for specific views of objects." The study was carried out jointly with Fang Fang, a graduate student in He’s laboratory.



The researchers presented volunteers with the image of a face, a car or a meaningless geometric object on the computer. In each case, the first image--called the adapting image--was turned to one side. After a very brief pause, another image of the same face or object--called the test image--was flashed on the screen. But this time, the image was either head-on or turned very slightly (three or six degrees) to one side or the other. Whatever the orientation of the test image, subjects were required to choose whether it was turned to the right or the left.

When subjects were presented with an adapting image turned 30 degrees to one side, then tested with an image of the same thing in head-on view, they tended to say the test image was tilted in the opposite direction of the adapting image. That is, if they first saw the face of a man turned 30 degrees to the left, then saw his face head-on, they said the face was turned to the right. This "adaptation effect" occurred 80 percent of the time; normally, responses for both directions would be equally likely. Even if the test image was turned three degrees in the same direction as the adapting image, the subjects guessed wrong half the time, saying the test image was turned in the other direction.

The reason for the errors is that when a person stares at an image, neurons that respond to the viewing angle of the image get "tired" and become less responsive when a very similar image is presented again, He said. The brain interprets this lack of response as the object not being turned in the direction the neurons are attuned to. This suggests that there are separate populations of neurons, each responding to a particular narrow range of orientations. The neurons are likely located in the lateral occipital cortex, an area of the cerebral cortex very far back on either side of the head.

The researchers also performed experiments that suggested that for faces, at least, subjects were not deciding the orientation of test images based on "local" features such as noses. When subjects saw unorganized fragments of faces--as if parts of the face were simply erased--as adapting images, no adaptation effect occurred.

"This shows that fragmented local features are not sufficient to get the adaptation effect," He said. "You must have a global representation of the face. But local features may be important within the context of a [complete] face.

"Also, if you adapt to a face, then test with an image of a car, you don’t get adaptation. So local features that identify the object as a face or a car are important. Researchers think there are populations of neurons that respond to classes of objects in the environment, for example, houses, hills, tools, faces and so forth."

The researchers next plan to put volunteers in a functional magnetic resonance imaging scanner and see how different neurons respond to different views of objects. The work was supported by the James S. McDonnell Foundation, the National Institutes of Health and the University of Minnesota.

Sheng He | EurekAlert!
Further information:
http://www1.umn.edu/twincities/index.php

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>