Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH study identifies potential Alzheimer’s risk gene

03.03.2005


Finding could further improve understanding of disease mechanism, lead to new treatments



Researchers from the MassGeneral Institute for Neurodegenerative Disorders (MIND) have identified a gene variant that may increase the risk of late-onset Alzheimer’s disease. In the March 3 New England Journal of Medicine they report that specific changes in the gene for a protein called ubiquilin-1 are associated with an increased incidence of Alzheimer’s in two large study samples. The discovery could lead to improved understanding of the disease mechanism and a new target for the development of preventive and treatment strategies.

"We believe this variant moderately but significantly raises the risk of Alzheimer’s disease," says Lars Bertram, MD, of the Genetics and Aging Unit at MIND, lead author of the study. "We now have to pinpoint the biological defects that accompany this finding, which also needs to be independently replicated in other Alzheimer’s sample groups." Bertram is an assistant professor of Neurology at Harvard Medical School (HMS).


Mutations that raise the risk of Alzheimer’s have been found in four genes. Three of these – involving the amyloid precursor, presenilin 1 and presenilin 2 proteins – cause rare, inherited, early-onset forms of the devastating disorder. The only genetic variation associated with the more common late-onset form is ApoE4, which increases risk but does not directly cause the disease. Researchers expect that several additional genes that affect the risk of developing Alzheimer’s may be found.

In 2003, the same research team published results of a full-genome screen of Alzheimer’s patients and their affected siblings in a sample of 437 families compiled by the National Institute of Mental Health (NIMH). That study identified several potential chromosome "hotspots" that could be associated with increased risk, one of the strongest on chromosome 9. Since the gene for ubiquilin-1, which is known to interact with the presenilins, resides in the same area of chromosome 9, the researchers chose to test it as a candidate gene.

For the current study the investigators analyzed several sequence variations in ubiquilin-1 and two other candidate genes located nearby on chromosome 9. With the assistance of colleagues from Neurogenetics, Inc., the MIND researchers used a technique called family-based genetic association analysis to evaluate 19 sequence changes in these three genes, searching for alterations more likely to appear in patients with Alzheimer’s. After first screening families from the same NIMH study group examined in the 2003 full-genome screen, they retested potential associations in a separate group of 217 sibling pairs. The results confirmed that particular changes in the ubiquilin-1 gene sequence occurred more frequently in individuals with Alzheimer’s than in their unaffected siblings.

"The same variants of this gene conferred increased risk for Alzheimer’s in both of these large study groups," says Rudolph Tanzi, PhD, director of the Genetics and Aging Unit and senior author of the study. "It was very encouraging to have the results confirmed in so many families."

The researchers then studied brain tissue from Alzheimer’s patients and controls to see if the identified gene variants actually change the production of ubiquilin-1. In both groups, the same gene variants that increased the risk of Alzheimer’s also led to increased production of a shorter form of ubiquilin-1, an overproduction that was even more pronounced in the patients. "Now we need to figure out what’s wrong with too much ubiquilin-1 and with this different form," says Tanzi. "We need to look at how this variant interacts with the presenilins and what effect that may have on the production of A-beta," the protein that accumulates in the amyloid plaques found in the brains of Alzheimer’s patients. Tanzi is a professor of Neurology at HMS.

The MGH researchers estimate that the increased risk accompanying these ubiquilin-1 gene variants is less than half that conferred by ApoE4. They and other research groups expect that 4 to 7 additional gene variants may be found that confer similar levels of risk.

Co-authors of the NEJM report are Mikko Hiltunen, PhD, Michelle Parkinson, Martin Ingelsson, MD, Karunya Ramasamy, Kristina Mullin, Rashmi Menon, Andrew Sampson, Monica Hsiao, Thomas Moscarillo, Bradley Hyman, MD, and Deborah Blacker, MD, ScD, all of the MGH; Christoph Lange, PhD, Harvard School of Public Health; and Kathryn Elliott, Gonul Velicelebi, PhD, Steven Wagner, PhD, and David Becker, PhD, Neurogenetics, Inc. The study was supported by grants from NIMH, the National Institute on Aging, the Alzheimer Association, the Deutsche Forschungsgemeinschaft, the Harvard Center for Neurodegeneration and Repair, and the National Alliance for Research on Schizophrenia and Depression.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>