Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researching airborne metals in transit workers’ bodies


Steel dust exposure in the NYC subway system has been of concern to subway workers and transit police for decades. A study by Lamont-Doherty Earth Observatory researchers will examine the level of airborne metal in subway workers. Photo credit: Mark Inglis

A pilot study gathers baseline information on subway workers’ exposure

by Jennifer Freeman

Working in the subway several hours each day, subway workers and transit police breathe more subway air than the typical commuter. Subway air has been shown to contain more steel dust than outdoor or other indoor air in New York City. But do transit workers’ bodies harbor elevated levels of these metals? And does this translate into a health concern for the workers?

In a new paper called Steel Dust in the New York City Subway System as a Source of Manganese, Chromium, and Iron Exposures for Transit Workers, Steven Chillrud, a research scientist at the Lamont-Doherty Earth Observatory, and colleagues discuss an ongoing pilot study that takes a closer look at these questions. The paper will be published in the March issue of the Journal of Urban Health, a special issue focusing on subway health research.

The pilot study is expected to show whether 40 transit workers’ blood and urine contains elevated levels of the metals that have been shown to exist in air collected in subway stations. “This is the type of information you need before deciding whether it is worthwhile to investigate any potential health impacts,” Chillrud explains. “Airborne metals levels that have been studied in the past were much higher than those in subway air, but subway levels are higher than outdoor air. So it’s an interesting in-between area.”

As Chillrud and colleagues write in the new paper, “Steel dust exposure in the NYC subway system has been of concern to subway workers and transit police for decades. As one of the largest subway systems in the world, the NYC subway environment could provide important information relevant to evaluating the potential for health effects from exposures to airborne metals.” The authors are researchers from the Lamont-Doherty Earth Observatory at Columbia, the Mailman School of Public Health, and Harvard’s School of Public Health.

Emphasizing that no adverse health effects have been linked to the levels of steel dust present in the subways, Chillrud says no one should stop riding the subway based on his research “We do know that increases in surface traffic emissions have adverse health effects,” he says.

A study published last year, in which high school students who commuted by subway collected air samples during their commutes, suggested that steel dust generated in the New York City subway did significantly increase the total amount of iron, manganese, and chromium that the students breathed. Furthermore, the levels of these airborne metals in the subway air were more than 100 times higher than outdoor or other indoor air in New York, but still 1000 times lower than the Occupational Safety and Health Administration’s Permissible Exposure Limit guidelines for workers. The current study extends the previous research to 40 transit workers, who could be expected to have higher exposure levels than commuters. (For more information on the earlier study, see

Also in the March issue, Dr. Robyn Gershon of the Mailman School of Public Health publishes a paper called Health and Safety Hazards Associated with Subways: A Review, which provides a comprehensive look at health and safety hazards that might affect both riders and subway workers, and indicates that while subways in general, and the New York City subway system in particular, are relatively safe, subway systems are vulnerable to a range of health and safety hazards. These include the threat of terrorist attacks, transmission of infectious diseases, subway noise, and a special concern with respect to crime, despite the fact that crime rates generally have been dropping.

Chillrud is one of many Earth Institute scientists whose research focuses on New York City’s environmental problems. Though Earth Institute research extends around the globe, its New York City Initiative encourages and coordinates New York-focused research projects, on topics ranging from garbage to climate to Hudson River ecology. A catalog of New York research by Earth Institute scientists can be found on the Web at

In the past five years, Steven Chillrud’s New York area research has included studying toxins in truck drivers who carted debris from the World Trade Center site, analyzing highway runoff, analyzing groundwaters and Hudson River sediments for studies of contaminant transport, and looking at relations between diesel emissions and asthma.

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines — earth sciences, biological sciences, engineering sciences, social sciences and health sciences — and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor.

Mary Tobin | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>