Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies mechanism of resistance to targeted therapy in lung cancer patients

24.02.2005


Findings help explain how cancer cells develop resistance to gefitinib



A new study led by investigators at Beth Israel Deaconess Medical Center (BIDMC) identifies a second mutation in a gene associated with non-small-cell lung cancer (NSCLC), a discovery that helps to explain why NSCLC tumors become resistant to treatment with the cancer therapy gefitinib (Iressa).

The findings, which are reported in the February 24, 2005 issue of The New England Journal of Medicine (NEJM), could help lead to the development of second-generation inhibitor drugs to treat NSCLC, which accounts for approximately 85 percent of all lung cancer cases and is the leading cause of death from cancer in the U.S. among both men and women.


One of a new generation of cancer therapies that work by disrupting the specific molecular target responsible for stimulating tumor growth, gefitinib acts on the receptor for the epidermal growth factor protein (EGFR) to halt the spread of cancer cells. In 2003, it was approved by the U.S. Food and Drug Administration as a treatment for NSCLC.

Clinical applications of the new drug initially yielded very good results, with approximately 10 percent of patients experiencing complete remission of their disease. Two separate studies published last year in NEJM and Science offered an explanation for how this was happening, suggesting that a mutation in the EGFR gene of these individuals was causing their cancer cells to produce abnormal versions of growth signals called tyrosine kinases. Among these patients, gefitinib works by snugly fitting into the activating pocket of the protein like a key into a keyhole, blocking the growth signals and thereby depriving the cancer cells of the stimuli they need to survive and proliferate.

However, in spite of the therapy’s initial success, patients inevitably suffered a relapse and their tumors started to grow again. "It appeared that the tumors in these patients had found a way to bypass the effects of gefitinib," explains the study’s last author Balazs Halmos, MD, a physician-scientist formerly at BIDMC and presently with the Ireland Cancer Center, University Hospitals of Cleveland. To detemine if this was indeed the case, Halmos identified a 71-year-old patient with advanced NSCLC whom he had been treating at BIDMC, and who had recently relapsed after two years of complete remission while undergoing gefitinib therapy.

Hypothesizing that the relapse may have been due to another mutation in the EGFR gene which was causing cancer cells to become resistant to the drug, Halmos, together with the study’s corresponding author Daniel Tenen, MD, a molecular biologist in the Division of Hematology/Oncology at BIDMC, and Susumu Kobayashi, MD, PhD, a physician-scientist in Tenen’s laboratory, obtained a second biopsy of the tumor and resequenced the EGFR tyrosine kinase domain.

Their studies confirmed the existence of a second mutation, and insertion of this mutation into test cells rendered them resistant to gefitinib in vitro. Further analysis revealed that the newly identified mutation was altering gefitinib’s drug-binding pocket and thereby changing the "keyhole" so that the "key" – gefitinib – no longer fit. "The development of a second mutation suggests that the tumor cells remain dependent on an active EGFR pathway for their proliferation," explains Tenen, who is also a Professor of Medicine at Harvard Medical School. "This mirrors the situation that developed over the past few years among patients with chronic myeloid leukemia and gastrointestinal stromal tumors who were being treated with imatinib [Gleevec]." In those cases, he adds, the identification of mechanisms of resistance helped lead to the development of second-generation inhibitor drugs now being clinically tested.

And in fact, according to study coauthor Bruce Johnson, MD, Director of the Dana-Farber/Harvard Cancer Center Lung Program, clinical investigators are already moving in this direction. "Our preliminary results have yielded encouraging findings, pointing towards drugs that might bypass this method of resistance," says Johnson. "We’re now in the process of planning clinical studies to test novel EGFR inhibitor compounds in lung-cancer patients whose tumors have become resistant to gefitinib."

The results may also lead to new diagnostic methods.

"I believe that findings like these will hasten the use of molecular oncology for everyday practice," says Tenen. "Analogous to the way that antibiotic and antiviral regimens might be selected today based on the results of microbiological testing, I can certainly envision a time in the future when molecular monitoring for mutations and drug regimens will be adjusted based on these results."

In addition to Halmos, Tenen, Kobayashi and Johnson, study coauthors include BIDMC investigators Olivier Kocher, MD, PhD, and Tajhal Dayaram, BA; and Dana-Farber Cancer Institute investigators Titus Boggon, PhD, Michael Eck, MD, PhD, Pasi Janne, MD, PhD, and Matthew Meyerson, MD, PhD.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>