Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies mechanism of resistance to targeted therapy in lung cancer patients

24.02.2005


Findings help explain how cancer cells develop resistance to gefitinib



A new study led by investigators at Beth Israel Deaconess Medical Center (BIDMC) identifies a second mutation in a gene associated with non-small-cell lung cancer (NSCLC), a discovery that helps to explain why NSCLC tumors become resistant to treatment with the cancer therapy gefitinib (Iressa).

The findings, which are reported in the February 24, 2005 issue of The New England Journal of Medicine (NEJM), could help lead to the development of second-generation inhibitor drugs to treat NSCLC, which accounts for approximately 85 percent of all lung cancer cases and is the leading cause of death from cancer in the U.S. among both men and women.


One of a new generation of cancer therapies that work by disrupting the specific molecular target responsible for stimulating tumor growth, gefitinib acts on the receptor for the epidermal growth factor protein (EGFR) to halt the spread of cancer cells. In 2003, it was approved by the U.S. Food and Drug Administration as a treatment for NSCLC.

Clinical applications of the new drug initially yielded very good results, with approximately 10 percent of patients experiencing complete remission of their disease. Two separate studies published last year in NEJM and Science offered an explanation for how this was happening, suggesting that a mutation in the EGFR gene of these individuals was causing their cancer cells to produce abnormal versions of growth signals called tyrosine kinases. Among these patients, gefitinib works by snugly fitting into the activating pocket of the protein like a key into a keyhole, blocking the growth signals and thereby depriving the cancer cells of the stimuli they need to survive and proliferate.

However, in spite of the therapy’s initial success, patients inevitably suffered a relapse and their tumors started to grow again. "It appeared that the tumors in these patients had found a way to bypass the effects of gefitinib," explains the study’s last author Balazs Halmos, MD, a physician-scientist formerly at BIDMC and presently with the Ireland Cancer Center, University Hospitals of Cleveland. To detemine if this was indeed the case, Halmos identified a 71-year-old patient with advanced NSCLC whom he had been treating at BIDMC, and who had recently relapsed after two years of complete remission while undergoing gefitinib therapy.

Hypothesizing that the relapse may have been due to another mutation in the EGFR gene which was causing cancer cells to become resistant to the drug, Halmos, together with the study’s corresponding author Daniel Tenen, MD, a molecular biologist in the Division of Hematology/Oncology at BIDMC, and Susumu Kobayashi, MD, PhD, a physician-scientist in Tenen’s laboratory, obtained a second biopsy of the tumor and resequenced the EGFR tyrosine kinase domain.

Their studies confirmed the existence of a second mutation, and insertion of this mutation into test cells rendered them resistant to gefitinib in vitro. Further analysis revealed that the newly identified mutation was altering gefitinib’s drug-binding pocket and thereby changing the "keyhole" so that the "key" – gefitinib – no longer fit. "The development of a second mutation suggests that the tumor cells remain dependent on an active EGFR pathway for their proliferation," explains Tenen, who is also a Professor of Medicine at Harvard Medical School. "This mirrors the situation that developed over the past few years among patients with chronic myeloid leukemia and gastrointestinal stromal tumors who were being treated with imatinib [Gleevec]." In those cases, he adds, the identification of mechanisms of resistance helped lead to the development of second-generation inhibitor drugs now being clinically tested.

And in fact, according to study coauthor Bruce Johnson, MD, Director of the Dana-Farber/Harvard Cancer Center Lung Program, clinical investigators are already moving in this direction. "Our preliminary results have yielded encouraging findings, pointing towards drugs that might bypass this method of resistance," says Johnson. "We’re now in the process of planning clinical studies to test novel EGFR inhibitor compounds in lung-cancer patients whose tumors have become resistant to gefitinib."

The results may also lead to new diagnostic methods.

"I believe that findings like these will hasten the use of molecular oncology for everyday practice," says Tenen. "Analogous to the way that antibiotic and antiviral regimens might be selected today based on the results of microbiological testing, I can certainly envision a time in the future when molecular monitoring for mutations and drug regimens will be adjusted based on these results."

In addition to Halmos, Tenen, Kobayashi and Johnson, study coauthors include BIDMC investigators Olivier Kocher, MD, PhD, and Tajhal Dayaram, BA; and Dana-Farber Cancer Institute investigators Titus Boggon, PhD, Michael Eck, MD, PhD, Pasi Janne, MD, PhD, and Matthew Meyerson, MD, PhD.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>