Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new designer drug is potent treatment for chronic myelogenous leukemia

21.02.2005


More potent and highly selective therapy effective in treating Gleevec-resistant disease



A laboratory study led by researchers at Dana-Farber Cancer Institute has shown that a potent and highly selective therapy for chronic myelogenous leukemia (CML) may ultimately be more effective than Gleevec®, the current standard of care. The researchers report in the February issue of Cancer Cell that the new compound, AMN107, is about 20 times more potent than Gleevec and is effective in treating Gleevec-resistant disease in model systems. Discovered by and in development with Novartis Pharma AG, AMN107 is a small molecule tyrosine kinase inhibitor.

"While Gleevec represents a major treatment advance for CML – approximately 95 percent of patients treated with Gleevec achieve remission – there clearly is a need for therapies that produce longer remissions, are active against advanced disease, and can be used when Gleevec loses effectiveness," says Dana-Farber’s James Griffin, MD, senior author of the study.


Gleevec shuts down CML by blocking the function of Bcr-Abl, the abnormal tyrosine kinase protein in the leukemic cells that causes them to grow too quickly. However, it does not bind very tightly to this protein, and patients can develop a resistant type of Bcr-Abl that no longer binds to Gleevec at all.

Using rational drug design to circumvent these shortcomings, researchers at Novartis determined the crystal structure of Bcr-Abl, and then constructed compounds that would lock into the receptor more securely than Gleevec. Investigators at Dana-Farber tested the new compounds to measure their effectiveness against CML in laboratory cell cultures and mice with the disease.

Data from the study published in Cancer Cell showed that in experiments with laboratory samples of CML cells, AMN107 killed the cells more effectively than Gleevec. In follow-up studies with mice with a human form of CML, AMN107 produced lengthier remissions than Gleevec and triggered remissions in animals in which the disease had become resistant to Gleevec. Side effects in the animals were minimal.

Synthesized in August 2002, AMN107 entered early Phase I clinical studies in May 2004 – 21 months later. Data presented last December at the American Society of Hematology showed that AMN107 had demonstrated significant clinical activity in the most challenging setting: Gleevec resistant accelerated and blast crisis CML patients.

"We’re very encouraged by the results so far," remarks Griffin, who is also a professor of medicine at Harvard Medical School. "This is an elegant example of how rational drug design –– developing drugs based on a molecular understanding of cell structures and processes –– can be used to attack human diseases."

The findings contribute to a larger Dana-Farber research effort, dubbed the "Kinase Project," which seeks to identify abnormal tyrosine kinases -- enzymes that spark or halt growth -- in cancer cells and test agents known to act against them.

The Cancer Cell study’s lead author is Ellen Weisberg, PhD, of Dana-Farber. Co-authors include researchers at Dana-Farber, Novartis, Brigham and Women’s Hospital, and Children’s Hospital Boston.

Bill Schaller | EurekAlert!
Further information:
http://www.danafarber.org

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>