Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’I had them a moment ago, now where are my glasses?’

18.02.2005


Study reveals clues to the mechanism of short-term memory

Understanding the biology of memory is a major goal of contemporary neuroscientists. Short-term or "working" memory is an important process that enables us to interact in meaningful ways with others and to comprehend the world around us on a moment-to-moment basis. A study published this week in Science (February 18) presents a strikingly simple yet robust mathematical model of how short-term memory circuits in the brain are likely to store, process, and make rapid decisions about the information the brain receives from the world.

A classic although purely practical example of working memory is our ability to look up a telephone number, remember it just long enough to dial it, and then promptly forget it. However, working memory is fundamental to many other cognitive processes including reading, writing, holding a conversation, playing or listening to music, decision-making, and thinking rationally in a general sense.



Cold Spring Harbor Laboratory computational neuroscientist Carlos Brody (brody@cshl.edu) explores how brain neurons interact with each other to form the circuits or "neural networks" that underlie working memory and other rapid and flexible cognitive processes.

In the new study, Brody’s group developed a mathematical model for interpreting data collected at Universidad Nacional Autónoma de México by his collaborator Rodolfo Romo. Romo’s group measured brain neuron activity of macaque monkeys while the animals performed a simple task that involves working memory.

In one version of the task, animals were trained to compare an initial stimulus (a vibration applied to a fingertip) with a second stimulus applied a few seconds later and to immediately provide a "yes" or "no" answer to the question "was the first vibration faster than the second?"

This behavior requires the animals to load the initial stimulus into their working memory ("loading phase"), hold information about that stimulus in their working memory ("memory phase"), and compare that information to the second stimulus and make a decision based on the comparison (the "decision phase").

At the outset of the study, Brody and Cold Spring Harbor Laboratory postdoctoral fellow Christian Machens hoped to develop a mathematical model--based on known properties of "spiking" neurons--that would explain how the brain carries out just the memory phase of the behavior.

To their surprise, the simple "mutual inhibition" model they developed yielded a neural network architecture that explains not only the memory phase, but also the loading phase and the decision phase of the behavior. The model makes several predictions about the neurological basis of working memory that can be tested to confirm the likelihood that the model is a significant advance toward understanding fundamental properties of brain structure and function.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>