Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’I had them a moment ago, now where are my glasses?’

18.02.2005


Study reveals clues to the mechanism of short-term memory

Understanding the biology of memory is a major goal of contemporary neuroscientists. Short-term or "working" memory is an important process that enables us to interact in meaningful ways with others and to comprehend the world around us on a moment-to-moment basis. A study published this week in Science (February 18) presents a strikingly simple yet robust mathematical model of how short-term memory circuits in the brain are likely to store, process, and make rapid decisions about the information the brain receives from the world.

A classic although purely practical example of working memory is our ability to look up a telephone number, remember it just long enough to dial it, and then promptly forget it. However, working memory is fundamental to many other cognitive processes including reading, writing, holding a conversation, playing or listening to music, decision-making, and thinking rationally in a general sense.



Cold Spring Harbor Laboratory computational neuroscientist Carlos Brody (brody@cshl.edu) explores how brain neurons interact with each other to form the circuits or "neural networks" that underlie working memory and other rapid and flexible cognitive processes.

In the new study, Brody’s group developed a mathematical model for interpreting data collected at Universidad Nacional Autónoma de México by his collaborator Rodolfo Romo. Romo’s group measured brain neuron activity of macaque monkeys while the animals performed a simple task that involves working memory.

In one version of the task, animals were trained to compare an initial stimulus (a vibration applied to a fingertip) with a second stimulus applied a few seconds later and to immediately provide a "yes" or "no" answer to the question "was the first vibration faster than the second?"

This behavior requires the animals to load the initial stimulus into their working memory ("loading phase"), hold information about that stimulus in their working memory ("memory phase"), and compare that information to the second stimulus and make a decision based on the comparison (the "decision phase").

At the outset of the study, Brody and Cold Spring Harbor Laboratory postdoctoral fellow Christian Machens hoped to develop a mathematical model--based on known properties of "spiking" neurons--that would explain how the brain carries out just the memory phase of the behavior.

To their surprise, the simple "mutual inhibition" model they developed yielded a neural network architecture that explains not only the memory phase, but also the loading phase and the decision phase of the behavior. The model makes several predictions about the neurological basis of working memory that can be tested to confirm the likelihood that the model is a significant advance toward understanding fundamental properties of brain structure and function.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>