Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’I had them a moment ago, now where are my glasses?’

18.02.2005


Study reveals clues to the mechanism of short-term memory

Understanding the biology of memory is a major goal of contemporary neuroscientists. Short-term or "working" memory is an important process that enables us to interact in meaningful ways with others and to comprehend the world around us on a moment-to-moment basis. A study published this week in Science (February 18) presents a strikingly simple yet robust mathematical model of how short-term memory circuits in the brain are likely to store, process, and make rapid decisions about the information the brain receives from the world.

A classic although purely practical example of working memory is our ability to look up a telephone number, remember it just long enough to dial it, and then promptly forget it. However, working memory is fundamental to many other cognitive processes including reading, writing, holding a conversation, playing or listening to music, decision-making, and thinking rationally in a general sense.



Cold Spring Harbor Laboratory computational neuroscientist Carlos Brody (brody@cshl.edu) explores how brain neurons interact with each other to form the circuits or "neural networks" that underlie working memory and other rapid and flexible cognitive processes.

In the new study, Brody’s group developed a mathematical model for interpreting data collected at Universidad Nacional Autónoma de México by his collaborator Rodolfo Romo. Romo’s group measured brain neuron activity of macaque monkeys while the animals performed a simple task that involves working memory.

In one version of the task, animals were trained to compare an initial stimulus (a vibration applied to a fingertip) with a second stimulus applied a few seconds later and to immediately provide a "yes" or "no" answer to the question "was the first vibration faster than the second?"

This behavior requires the animals to load the initial stimulus into their working memory ("loading phase"), hold information about that stimulus in their working memory ("memory phase"), and compare that information to the second stimulus and make a decision based on the comparison (the "decision phase").

At the outset of the study, Brody and Cold Spring Harbor Laboratory postdoctoral fellow Christian Machens hoped to develop a mathematical model--based on known properties of "spiking" neurons--that would explain how the brain carries out just the memory phase of the behavior.

To their surprise, the simple "mutual inhibition" model they developed yielded a neural network architecture that explains not only the memory phase, but also the loading phase and the decision phase of the behavior. The model makes several predictions about the neurological basis of working memory that can be tested to confirm the likelihood that the model is a significant advance toward understanding fundamental properties of brain structure and function.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>