Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’I had them a moment ago, now where are my glasses?’

18.02.2005


Study reveals clues to the mechanism of short-term memory

Understanding the biology of memory is a major goal of contemporary neuroscientists. Short-term or "working" memory is an important process that enables us to interact in meaningful ways with others and to comprehend the world around us on a moment-to-moment basis. A study published this week in Science (February 18) presents a strikingly simple yet robust mathematical model of how short-term memory circuits in the brain are likely to store, process, and make rapid decisions about the information the brain receives from the world.

A classic although purely practical example of working memory is our ability to look up a telephone number, remember it just long enough to dial it, and then promptly forget it. However, working memory is fundamental to many other cognitive processes including reading, writing, holding a conversation, playing or listening to music, decision-making, and thinking rationally in a general sense.



Cold Spring Harbor Laboratory computational neuroscientist Carlos Brody (brody@cshl.edu) explores how brain neurons interact with each other to form the circuits or "neural networks" that underlie working memory and other rapid and flexible cognitive processes.

In the new study, Brody’s group developed a mathematical model for interpreting data collected at Universidad Nacional Autónoma de México by his collaborator Rodolfo Romo. Romo’s group measured brain neuron activity of macaque monkeys while the animals performed a simple task that involves working memory.

In one version of the task, animals were trained to compare an initial stimulus (a vibration applied to a fingertip) with a second stimulus applied a few seconds later and to immediately provide a "yes" or "no" answer to the question "was the first vibration faster than the second?"

This behavior requires the animals to load the initial stimulus into their working memory ("loading phase"), hold information about that stimulus in their working memory ("memory phase"), and compare that information to the second stimulus and make a decision based on the comparison (the "decision phase").

At the outset of the study, Brody and Cold Spring Harbor Laboratory postdoctoral fellow Christian Machens hoped to develop a mathematical model--based on known properties of "spiking" neurons--that would explain how the brain carries out just the memory phase of the behavior.

To their surprise, the simple "mutual inhibition" model they developed yielded a neural network architecture that explains not only the memory phase, but also the loading phase and the decision phase of the behavior. The model makes several predictions about the neurological basis of working memory that can be tested to confirm the likelihood that the model is a significant advance toward understanding fundamental properties of brain structure and function.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>