Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows naturally occurring proteins protect against rapid tumor growth

16.02.2005


Research led by investigators at Beth Israel Deaconess Medical Center (BIDMC) helps explain how a group of angiogenesis inhibitor molecules serve as an important defense mechanism against the development and spread of cancer, offering key insights into why cancerous tumors grow at different rates among different individuals.


The findings, which could help lead to the development of new drug treatments to help keep existing tumors at bay, are reported in the early edition of the Proceedings of the National Academy of Sciences (PNAS) and in the Feb. 22 edition of the publication.


Angiogenesis, the process by which new blood vessels are derived from preexisting capillaries, is considered essential for tumor growth. The "angiogenic switch" is turned on when levels of angiogenesis stimulator molecules (VEGF, bFGF) exceed those of angiogenesis inhibitor molecules. These proteins – which include tumstatin, endostatin and thrombospondin-1 – are naturally present in body fluids or tissues, providing a counterbalance to the stimulator molecules.

Earlier studies by the paper’s senior author Raghu Kalluri, PhD, published in Science and Cancer Cell in 2002 and 2003, respectively, helped to explain the mechanisms by which tumstatin and endostatin prevent the growth of new blood vessels.



Based on these earlier findings, and coupled with two separate clinical observations – that Down syndrome patients have a significantly smaller incidence of cancer than the population-at-large and that nonsymptomatic microscopic tumors exist in the organs of healthy individuals – Kalluri hypothesized that angiogenic inhibitor molecules were acting as tumor suppressors to control the rate of cancer progression.

"For several decades now, autopsies have shown that many people [between ages 40 and 50] who have died of trauma [i.e. automobile accidents, suicide] have tiny dormant tumors in one or more of their organs, though only one percent have been diagnosed with cancer," explains Kalluri, who is the director of the Center for Matrix Biology at BIDMC and Associate Professor of Medicine at Harvard Medical School. "Our goal in this research was to find out if naturally occurring proteins were preventing the recruitment of new blood vessels into the tumors, and thereby keeping the tiny dormant tumors from developing into large malignant tumors. We wanted to better understand the important guards and checkpoints that our bodies possess."

To test the hypothesis that angiogenesis inhibitor molecules were responsible for reining in tumor growth, Kalluri and his colleagues studied the proteins tumstatin, endostatin and thrombospondin-1, natural inhibitors of angiogenesis found in blood, urine and tissues throughout the body. The authors created mice genetically deleted in each of these proteins to help ascertain their normal function in tumor growth.

Their results showed when any one of these inhibitors was removed from the mice, tumors grew at a rate two to three times faster when compared with normal mice. "But even more significant," notes Kalluri, "we found that when two of the inhibitor proteins were simultaneously removed, the tumors grew faster still, suggesting that the body’s own natural capacity to guard against cancer progression plays a role equally as important as genetic defects of cancer cells in whether or not tumors grow and spread."

To demonstrate therapeutic possibilities, the researchers then developed a transgenic mouse that overproduced the endostatin protein in quantities that mimicked Down syndrome patients (a 1.6-fold increase over normal) who, due to an extra copy of chromosome 21, have elevated levels of the protein. As predicted, tumors in this group of mice grew three times more slowly than did tumors in normal mice.

"The evidence that tumor angiogenesis is controlled by endogenous proteins has been accumulating over the past decade, but has depended largely on the use of these molecules that are introduced into tumor-bearing mice," notes Robert Weinberg, PhD, of the Whitehead Institute for Biomedical Research and the Department of Biology at the Massachusetts Institute of Technology (MIT). "The real question has been, however, whether the tissues of the tumor-bearing mouse [and by extension, a human] produce these agents in quantities that truly affect tumor growth. With this paper, we have compelling evidence that a number of these molecules, when produced by the mouse’s own tissues, are able to act to constrain blood vessel growth in the tumors – the final piece of proof needed to demonstrate their importance in preventing the outgrowth of tumors."

"These mice [in the Kalluri study] are the first animals to mimic the protection against cancer which is afforded individuals with Down syndrome who also have a similar increase in endostatin in their blood, and are the most protected against cancer of all humans," adds Judah Folkman, MD, Director of the Vascular Biology Program at Children’s Hospital Boston whose laboratory first proposed the angiogenesis paradigm more than 30 years ago.

"This is a landmark paper because it provides genetic proof that endogenous inhibitors of angiogenesis circulating in the blood may protect us from the disease of cancer and is the first demonstration that a mild increase in one of the circulating angiogenesis inhibitors, endostatin, confers protection against cancer in mice, i.e. reduces the growth rate of tumors by 300 percent," Folkman adds.

"Between nine and 10 million people worldwide die of cancer each year," says Kalluri. "While a lot has been learned of how genetic defects convert normal cells into cancerous cells, much less is known about how the body defends itself against the growth of cancer. Our study helps provide a glimpse into what may be happening. The hope is that this new understanding of cancer growth can eventually lead to the use of these natural proteins as therapies to treat cancer at an early stage, before it becomes a devastating disease."

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>