Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Murder, eyewitness identification and the limits of human vision

15.02.2005


Geoffrey Loftus’ latest research reads more like a murder mystery than a scientific paper.



The University of Washington psychologist’s new study opens with a savage beating and murder on the streets of Fairbanks, Alaska. It features cameo appearances by Julia Roberts and other celebrities. It ends with the conviction of two men based on the eyewitness identification of the defendants from a distance of 450 feet. And, in a post-script, an appeals court orders a new trial based in part on "scientific trials" and conversations conducted by jurors outside the courthouse, without the judge’s knowledge. In between, the limits of the human visual system are explored.

Loftus, who testified as an expert witness in the case, examines why it is easier to identify someone close up rather than at a distance in an upcoming issue of the journal Psychonomic Bulletin & Review.


"When you see anything at a distance the human visual system starts to lose small details. The greater the distance the coarser the detail you lose, " Loftus said.

"At 10 feet you might not be able to see individual eyelashes on a person’s face. At 200 feet you would not even be able to see a person’s eyes. At 500 feet you could see the person’s head but just as one big blur. There is equivalence between size and blurriness. By making something smaller you lose the fine detail."

Co-author of the study is Erin Harley, who recently earned her doctorate at the UW and is now a post-doctoral researcher at the University of California at Los Angeles. The research was funded by the National Institute of Mental Health.

The researchers conducted a number of experiments to establish the relationship between blurriness and distance. First, they started with very small, unrecognizable images of famous people such as Roberts, Michael Jordan, Jennifer Lopez, Bill Gates and President George W. Bush. Next, the researchers gradually made the images larger until subjects could identify each celebrity. They recorded the size at which each celebrity was recognized and converted this to a corresponding distance. Loftus and Harley did similar tests using initially blurred images of celebrities and gradually clarified them until the test subjects were able to recognize the celebrities. This time they recorded the amount of blurring that made a face unrecognizable. All of the subjects in the experiments had at least uncorrected or corrected 20/20 vision.

"We determined that blurriness and distance are equivalent from the visual system’s perspective," said Loftus. "When you make an image smaller you lose information in exactly the same way as happens when you keep the picture large but make it blurry. That is why when witnesses say they viewed something from 120 feet, for example, I can take a picture and know precisely how much to blur it to match that distance."

Loftus’ formula for how much detail is lost is based on 20/20 vision and normal daytime light. It can be adjusted for nighttime or when a person has extremely good or poor eyesight.

In the Fairbanks case, a witness standing several blocks away viewed the 1997 beating of one man by four suspects. The suspects were tied to a separate fatal beating of second man, but that crime had no witnesses. The suspects, however, were tied to the murder by circumstantial evidence. The witness, who saw the non-fatal beating from a distance of about 450 feet, later identified two of the suspects from police photographic lineups. He also identified the two in a subsequent trial.

Loftus also testified as an expert witness, noting, among other things, that identifying a person from 450 feet was the equivalent of sitting in the centerfield bleachers at New York’s Yankee Stadium and being able to recognize someone in the box seats behind home plate.

The jury convicted the four men at end of a 1999 trial. But the story didn’t end there. Loftus began his research, and in 2003 found out that a newspaper reporter turned journalism professor had his students interview people involved in case. Four of the jurors admitted conducting an experiment during a break in the trial, thinking they had permission to do so. They had one or more jurors pace off given distances and see if the others could recognize them. One of the jurors said although he had bad eyesight and couldn’t recognize faces at those distances, he believed the other jurors because they could. The jurors said this gave credibility to the eyewitness identification. In late 2004, an appeals court granted a new trial.

"It is becoming more apparent that there are serious problems with eyewitness testimony," said Loftus. "Misidentifications can occur, and the quality of memory is limited by the distance at which a witness sees a person. This research, which specifies mathematically the relation between memory quality and distance, results in our being able to present intuitive information to a jury, which can help it come to the best possible decision in a case."

Loftus said the distance-blurriness effects are not unique to faces and they also have been demonstrated in laboratory experiments using images of vehicles.

Outside of the courtroom, he sees a number of other practical applications for the research. These include the design of sensing devices for spotting terrorists and the reliability of people identifying potential sites for weapons of mass destruction from aerial photographs.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>