Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds markers for premature birth risk at the molecular level

10.02.2005


Raises potential for new prenatal test



For the first time, researchers have successfully profiled the amniotic fluid metabolome (the sum of all metabolic processes occurring in the amniotic fluid), in order to identify which women who have experienced preterm labor are also at risk for delivering a premature baby. With nearly one in eight babies in the U.S. born prematurely every year, and the problem of premature birth increasing, the need for tools that can identify preterm delivery risk has never been greater, experts say.

The news was announced today at the 25th annual Society for Maternal-Fetal Medicine (SMFM) meeting here. "We studied the amniotic fluid of three groups of patients – those with preterm labor who delivered at term, those with intra-amniotic inflammation who had both preterm labor and delivery, and those with no sign of inflammation who still had preterm labor and delivery," said Roberto Romero, M.D., lead study author and SMFM member. "We discovered that by using metabolic profiling, 96 percent of the time we could correctly identify the patients as belonging to the appropriate clinical group.


"A second study, in a different set of patients with a larger sample size, has already confirmed the effectiveness of our method. Until now, we have never had a way to predict the course of preterm labor with such accuracy. Metabolomic profiling has given us that tool," Dr. Romero said. "Prematurity is a common, serious, and growing problem in this country," said Nancy S. Green, M.D., medical director of the March of Dimes. "More research to identify and address the risk factors for prematurity are needed if we are to reverse this trend. The innovative nature of this study has earned it our annual award for the best research paper on prematurity."

Sanda Pecina | EurekAlert!
Further information:
http://www.marchofdimes.com/prematurity/

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>