Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds markers for premature birth risk at the molecular level

10.02.2005


Raises potential for new prenatal test



For the first time, researchers have successfully profiled the amniotic fluid metabolome (the sum of all metabolic processes occurring in the amniotic fluid), in order to identify which women who have experienced preterm labor are also at risk for delivering a premature baby. With nearly one in eight babies in the U.S. born prematurely every year, and the problem of premature birth increasing, the need for tools that can identify preterm delivery risk has never been greater, experts say.

The news was announced today at the 25th annual Society for Maternal-Fetal Medicine (SMFM) meeting here. "We studied the amniotic fluid of three groups of patients – those with preterm labor who delivered at term, those with intra-amniotic inflammation who had both preterm labor and delivery, and those with no sign of inflammation who still had preterm labor and delivery," said Roberto Romero, M.D., lead study author and SMFM member. "We discovered that by using metabolic profiling, 96 percent of the time we could correctly identify the patients as belonging to the appropriate clinical group.


"A second study, in a different set of patients with a larger sample size, has already confirmed the effectiveness of our method. Until now, we have never had a way to predict the course of preterm labor with such accuracy. Metabolomic profiling has given us that tool," Dr. Romero said. "Prematurity is a common, serious, and growing problem in this country," said Nancy S. Green, M.D., medical director of the March of Dimes. "More research to identify and address the risk factors for prematurity are needed if we are to reverse this trend. The innovative nature of this study has earned it our annual award for the best research paper on prematurity."

Sanda Pecina | EurekAlert!
Further information:
http://www.marchofdimes.com/prematurity/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>