Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU psychology researchers show how attention enhances visual perception

10.02.2005


Researchers at New York University have determined the location in the brain where involuntary attention enhances visual processing. The researchers, from NYU’s Department of Psychology and Center for Neural Science, found that attending to, or selectively processing information from a given location without directing our eyes to that location, enhances performance in visual tasks as well as the neural activity underlying the processing of ensuing images. The results are published in the latest issue of the journal Neuron.



A sudden appearance of an object in our visual field will grab our attention--causing an involuntary reaction. Taosheng Liu, Franco Pestilli, and Marisa Carrasco, the researchers for the Neuron study, have previously investigated this process. Behavioral research from the Carrasco lab has shown that involuntary, or transient, attention improves performance in simple, early visual processing tasks--it actually helps us see things better. The NYU study in Neuron shows the neural basis of this effect. It identifies an increase in neural activity in areas of the brain that respond to the attended stimulus--that is, to the information that is selectively processed at a given location.

In this study, the researchers presented observers with two patches simultaneously in the periphery of their line of sight on a computer display: one tilted (target) and one vertical (distracter). They were asked to indicate whether the target was tilted to the right or to the left. Each display was preceded by a cue that was either on the same (cued location) or the opposite (uncued location) side of the target [see diagram of experimental trial]. The purpose of the pre-cue was to automatically attract observers’ attention to its location. Importantly, the cue was completely uninformative regarding both target location and orientation, and observers were told so. Although there was no incentive to use the cue, observers still performed better when the target appeared at the cued location than when it appeared at the uncued location, confirming the reflexive nature of this type of attention orienting.


The researchers used functional magnetic resonance imaging (fMRI) to measure brain activity while observers performed this task inside the MR scanner housed at the NYU Center for Brain Imaging. This technology allows scientists to map activity in the visual cortex [see diagram of brain]. This experiment revealed that when a cue preceded the target, the target evoked a larger brain response than when the cue appeared in the other location. It also showed the magnitude of the cueing effect increased from the earliest to later areas of visual processing [see graph].

Liu, who earned his undergraduate degree from the University of Science and Technology of China, received his Ph.D. from Columbia University and currently is a postdoctoral researcher at NYU. Pestilli obtained his licentiate from the University of Rome and is an NYU doctoral student. Carrasco received her licentiate in psychology from the National University of Mexico before going on to receive her M.A. and Ph.D. in psychology from Princeton University. She is a professor of psychology and neural science and chair of NYU’s Psychology Department.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>