Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU psychology researchers show how attention enhances visual perception

10.02.2005


Researchers at New York University have determined the location in the brain where involuntary attention enhances visual processing. The researchers, from NYU’s Department of Psychology and Center for Neural Science, found that attending to, or selectively processing information from a given location without directing our eyes to that location, enhances performance in visual tasks as well as the neural activity underlying the processing of ensuing images. The results are published in the latest issue of the journal Neuron.



A sudden appearance of an object in our visual field will grab our attention--causing an involuntary reaction. Taosheng Liu, Franco Pestilli, and Marisa Carrasco, the researchers for the Neuron study, have previously investigated this process. Behavioral research from the Carrasco lab has shown that involuntary, or transient, attention improves performance in simple, early visual processing tasks--it actually helps us see things better. The NYU study in Neuron shows the neural basis of this effect. It identifies an increase in neural activity in areas of the brain that respond to the attended stimulus--that is, to the information that is selectively processed at a given location.

In this study, the researchers presented observers with two patches simultaneously in the periphery of their line of sight on a computer display: one tilted (target) and one vertical (distracter). They were asked to indicate whether the target was tilted to the right or to the left. Each display was preceded by a cue that was either on the same (cued location) or the opposite (uncued location) side of the target [see diagram of experimental trial]. The purpose of the pre-cue was to automatically attract observers’ attention to its location. Importantly, the cue was completely uninformative regarding both target location and orientation, and observers were told so. Although there was no incentive to use the cue, observers still performed better when the target appeared at the cued location than when it appeared at the uncued location, confirming the reflexive nature of this type of attention orienting.


The researchers used functional magnetic resonance imaging (fMRI) to measure brain activity while observers performed this task inside the MR scanner housed at the NYU Center for Brain Imaging. This technology allows scientists to map activity in the visual cortex [see diagram of brain]. This experiment revealed that when a cue preceded the target, the target evoked a larger brain response than when the cue appeared in the other location. It also showed the magnitude of the cueing effect increased from the earliest to later areas of visual processing [see graph].

Liu, who earned his undergraduate degree from the University of Science and Technology of China, received his Ph.D. from Columbia University and currently is a postdoctoral researcher at NYU. Pestilli obtained his licentiate from the University of Rome and is an NYU doctoral student. Carrasco received her licentiate in psychology from the National University of Mexico before going on to receive her M.A. and Ph.D. in psychology from Princeton University. She is a professor of psychology and neural science and chair of NYU’s Psychology Department.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>