Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds direct association between cardiovascular disease and periodontal bacteria

08.02.2005


Researchers report this week that older adults who have higher proportions of four periodontal-disease-causing bacteria inhabiting their mouths also tend to have thicker carotid arteries, a strong predictor of stroke and heart attack. The study, published in the current issue of the journal Circulation, was supported by four agencies of the National Institutes of Health.



According to the authors, these data mark the first report of a direct association between cardiovascular disease and bacteria involved in periodontal disease, inflammation of the gums that affects to varying degrees an estimated 200 million Americans. But the researchers say the findings are not proof that the bacteria cause cardiovascular disease, directly or indirectly.

"What was interesting to us was the specificity of the association," said Moïse Desvarieux, M. D., Ph. D., the study’s lead author and an infectious disease epidemiologist at Columbia University’s Mailman School of Public Health and the University of Minnesota. "These same four bacteria were there, they were always there in the analysis, and the relationship seems to be pretty much, with one exception, limited to them."


Desvarieux stressed that although the new data further illuminate a long-standing scientific issue, they shed little light on the broader public health question related to cardiovascular disease. The 657 people in the study had their oral bacteria and carotid thickness evaluated at the same point in time. So Desvarieux said, "It’s impossible to know which comes first, the periodontal disease or thickening of the carotid artery." The answer to that question is fundamental to establishing causality--in this case, whether chronic inflammation or infection could have led to the atherosclerosis of the carotid arteries.

He and his colleagues noted that the public health information could come soon. "We will re-examine the participants in less than three years, and, at that point, we can better evaluate the progression of the atherosclerosis and, hopefully, begin to establish a time frame underlying the diseases," said Ralph Sacco, M.D., M.S., associate chair of Neurology, professor of Neurology and Epidemiology, and the director of the Stroke and Critical Care Division of Columbia University College of Physicians and Surgeons. He also is an author on the paper.

The idea that oral bacteria shed from chronic gum infections, enter the circulatory system, and possibly contribute to diseases of the heart and other body organs once was widely accepted in medicine. The concept, known as the "focal infection theory," fell out of fashion by the 1940s, then resurfaced four decades later with the publication of new data proposing a link.

Since then, a major sticking point in advancing the research has been simply how to pursue the hypothesis. Lacking the scientific tools to track oral bacteria in the body over several decades to determine if they directly trigger heart disease, most previous studies pursued indirect evidence. These included various measures of oral and cardiovascular health, which researchers then extrapolated to the influence of the oral pathogens. Conspicuously missing from the debate has been a large, well-designed study that in some way directly evaluates the role of the oral pathogens themselves.

To fill this void, the National Institute of Dental and Craniofacial Research launched the Oral Infections and Vascular Disease Epidemiology Study (INVEST), a multi-disciplinary endeavor whose principal investigator is Dr. Desvarieux. The study, which is the source of the paper published this week in Circulation, will monitor the oral and cardiovascular health of a large, racially mixed group of people. All enrollees in the study live in a northern section of Manhattan in New York City and are age 55 or older. Participants are also members of the Northern Manhattan Study (NOMAS), a prospective cohort study supported by NIH’s National Institute of Neurological Disorders and Stroke. Dr. Sacco is principal investigator of the companion NOMAS study.

"Although more than 600 bacteria have been shown to colonize the mouth, each person tends to carry different proportions of these microbes," said Panos N. Papapanou, D.D.S, Ph.D., an author on the paper and professor and chair of the Section of Oral and Diagnostics Sciences and director of the Division of Periodontics at Columbia University School of Dental and Oral Surgery. He noted that only a subset of bacteria tend to be dominant in dental plaque.

"We wanted to know during the baseline examination of the participants whether it was true that the greater the proportion of so-called ’bad’ bacteria in the mouth, the higher the likelihood of a thickened carotid artery," added Papapanou, whose laboratory performed the periodontal microbiological analysis.

To get their answer, Desvarieux and colleagues collected on average seven dental plaque samples from a total of 657 older adults enrolled in INVEST who had not lost their teeth. The samples, taken from predetermined sites in the mouth, both diseased and healthy, were measured for 11 oral bacteria, including four bacteria widely regarded to be involved in causing periodontal disease: Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. The other seven bacteria served as controls, as their role in periodontal disease was either neutral or has not yet been established.

Then, to evaluate their cardiovascular health, the participants received a carotid intima-media thickness (IMT) measurement and provided a blood sample to determine their C-reactive protein levels. C-reactive protein has been reported to be elevated in people with periodontal disease, and recent studies found that testing for this protein may be predictive of developing heart disease.

Controlling for several risk factors that might skew their data - such as smoking and diabetes, both of which are independently associated with these conditions - the scientists found the higher the levels of these periodontal-disease-causing bacteria, the more likely people were to have thicker carotid arteries. Interestingly, they noted no association between IMT, the periodontal pathogens, and C-reactive protein levels, suggesting the protein is involved in another cardiovascular disease pathway.

Next, the scientists wondered whether the broad association might be due to the four pathogens involved in causing periodontal disease, which combined accounted for only 23 percent of the bacteria in dental plaque. If so, the finding would provide added specificity to strengthen the case for the association.

"After re-analyzing the data, we found, with the exception of an oral bacterium called Micromonas micros, the relationship was limited to these four established oral pathogens," said David Jacobs, Ph. D., another author and a professor in the Division of Epidemiology at the University of Minnesota School of Public Health.

"In other words, it was exactly what we hypothesized," said Desvarieux.

However, he cautioned, "It now becomes crucial to follow the participants over time and see whether these baseline findings hold up and further translate into clinical disease."

Bob Kuska | EurekAlert!
Further information:
http://www.nidcr.nih.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>