Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers uncover how plaque in neck artery leads to stroke-inducing blood clots

08.02.2005


Findings press need for early treatment to help prevent strokes

A UC Irvine Stroke Center study reveals how plaque in the main neck artery plays a critical role in creating blood clots that greatly increase the risk of stroke.

Dr. Mark Fisher, director of the UCI Stroke Center, and colleagues found that in the carotid artery, the primary source of blood to the brain, plaques form lesions that support the growth of the stroke-causing blood clots, which can either block the artery or break off and travel into the brain.



The findings suggest an increased need for early identification and treatment of this plaque growth for people who are at risk for stroke. Strokes are the leading reason for disability and the third leading cause of death in the United States today, and 80 percent of these strokes are caused by blood clots. Study results appear online in Stroke, a peer-reviewed journal of the American Heart Association (www.strokeaha.org). “Plaque growth in the carotid artery is the most important surgically correctable cause of stroke,” said Fisher, the study leader. “However, there has been only limited information about the nature of these plaque lesions, and this study provides some of the best evidence yet showing their link to stroke.”

The work of Fisher and his colleagues shows the importance of several pathologic features of the plaques that produce stroke symptoms. Extensive analyses were performed on surgical specimens from two of the most important clinical trials in the history of stroke research: the North American Symptomatic Carotid Endarterectomy Trial and the Asymptomatic Carotid Atherosclerosis Study. Fisher’s study constitutes the only formal interaction between these two historically important studies.

Fisher and his colleagues found that carotid-artery plaques most likely to cause stroke first develop depressions in their surface called ulcerations. Blood can pool in these ulcerations and ultimately form into clots. This suggests that early detection and treatment of carotid-artery plaques before these ulcerations grow can benefit people who exhibit stroke risk factors such as hypertension, elevated cholesterol, diabetes or a previous stroke. “As carotid-imaging technologies improve, identification of both ulceration and blood-clot development will assist in the decision for removal of carotid-artery plaques,” said Fisher, professor and chair of neurology in the UCI School of Medicine.

Dr. Annlia Paganini-Hill, Aldana Martin and Dr. Michele Cosgrove of the University of Southern California in Los Angeles; Dr. James F. Toole of the Wake Forest School of Medicine in Winston-Salem, N.C.; Dr. Henry J.M. Barnett of the John P. Robarts Research Institute in London, Ont., and Dr. John Norris of the St. George Hospital Medical School in London, England, assisted with the study. The National Institutes of Health provided funding support.

The UCI Stroke Center’s clinical activities are located in the UCI Medical Center, which is the first academic medical center in the nation to be certified by the Joint Commission on Accreditation of Healthcare Organizations for stroke care.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.strokeaha.org

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>