Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special imaging study shows failing hearts are ’energy starved’

04.02.2005


Findings could point way to new treatments



Using magnetic resonance spectroscopy (MRS) for the first time to examine energy production biochemistry in a beating human heart, Johns Hopkins researchers have found substantial energy deficits in failing hearts.

The findings, published in the January 18 issue of the Proceedings of the National Academy of Sciences, confirm what many scientists have conjectured for years about heart failure, and suggest new treatments designed to reduce energy demand and/or augment energy transfer.


"The heart consumes more energy per gram than any other organ," notes Paul A. Bottomley, Ph.D., lead researcher and director of magnetic resonance research at the Johns Hopkins Department of Radiology. "While scientists have long known that nucleotide adenosine triphosphate (ATP) is the chemical that fuels heart contractions and that creatine kinase (CK) is the enzyme for one of the sources of ATP, we believe this is the first time someone has actually measured the flux of ATP produced by CK reaction in the beating human heart."

Specifically, Bottomley and a team of cardiologists and radiologists at Hopkins used MRS to provide direct molecular-level measurements of the CK supply in normal, stressed and failing human hearts. Other team members include Robert G. Weiss, M.D., and Gary Gerstenblith, M.D., both in the Cardiology Division of the Hopkins Department of Medicine.

For the study, the researchers used an MRI device that combines conventional magnetic resonance imaging with spectroscopy to provide not only images of the anatomy, but also direct measurements of the concentrations of various important biochemicals and their chemical reaction rates within the cells of various tissues. They first performed MRS on 14 healthy volunteers to measure cardiac CK flux at rest and with pharmaceutically induced stress to determine whether increased energy demand during stress increases the rate of ATP synthesis through CK.

Then, 17 patients with histories of heart failure were similarly tested to measure the CK flux. Results showed that CK flux in healthy hearts is adequate to supply energy to the heart over a fairly wide normal range of rest and stress conditions.

However, in patients with mild-to-moderate heart failure, there was a 50 percent reduction in the ATP energy supplied by the CK reaction. "The failing hearts have an energy supply deficit," says Bottomley. "The reduction is sufficiently large that the supply may be insufficient to match energy demands of the heart during stress or exercise, which is often when symptoms appear. Many factors may contribute to human heart failure, but a failure in the energy supply would certainly affect the heart’s function if supply can’t be met."

Gary Stephenson | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>