Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special imaging study shows failing hearts are ’energy starved’

04.02.2005


Findings could point way to new treatments



Using magnetic resonance spectroscopy (MRS) for the first time to examine energy production biochemistry in a beating human heart, Johns Hopkins researchers have found substantial energy deficits in failing hearts.

The findings, published in the January 18 issue of the Proceedings of the National Academy of Sciences, confirm what many scientists have conjectured for years about heart failure, and suggest new treatments designed to reduce energy demand and/or augment energy transfer.


"The heart consumes more energy per gram than any other organ," notes Paul A. Bottomley, Ph.D., lead researcher and director of magnetic resonance research at the Johns Hopkins Department of Radiology. "While scientists have long known that nucleotide adenosine triphosphate (ATP) is the chemical that fuels heart contractions and that creatine kinase (CK) is the enzyme for one of the sources of ATP, we believe this is the first time someone has actually measured the flux of ATP produced by CK reaction in the beating human heart."

Specifically, Bottomley and a team of cardiologists and radiologists at Hopkins used MRS to provide direct molecular-level measurements of the CK supply in normal, stressed and failing human hearts. Other team members include Robert G. Weiss, M.D., and Gary Gerstenblith, M.D., both in the Cardiology Division of the Hopkins Department of Medicine.

For the study, the researchers used an MRI device that combines conventional magnetic resonance imaging with spectroscopy to provide not only images of the anatomy, but also direct measurements of the concentrations of various important biochemicals and their chemical reaction rates within the cells of various tissues. They first performed MRS on 14 healthy volunteers to measure cardiac CK flux at rest and with pharmaceutically induced stress to determine whether increased energy demand during stress increases the rate of ATP synthesis through CK.

Then, 17 patients with histories of heart failure were similarly tested to measure the CK flux. Results showed that CK flux in healthy hearts is adequate to supply energy to the heart over a fairly wide normal range of rest and stress conditions.

However, in patients with mild-to-moderate heart failure, there was a 50 percent reduction in the ATP energy supplied by the CK reaction. "The failing hearts have an energy supply deficit," says Bottomley. "The reduction is sufficiently large that the supply may be insufficient to match energy demands of the heart during stress or exercise, which is often when symptoms appear. Many factors may contribute to human heart failure, but a failure in the energy supply would certainly affect the heart’s function if supply can’t be met."

Gary Stephenson | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>