Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Regular computer use for work, but not play, aids student test performance


New Boston College/UMass study analyzes student computer use and test performance

Regular use of computers can have an effect on student performance on standardized tests, according to a new study by researchers at Boston College and the University of Massachusetts at Lowell.

Analyzing test performance and computer uses of 986 fourth grade students from 55 classrooms in nine Massachusetts school districts, the study found that the more regularly students use computers to write papers for school, the better they performed on the Massachusetts Comprehensive Assessment Systems (MCAS) English/Language Arts exam. This positive effect occurred despite the fact that students were not allowed to use computers for the test.

Conversely, the study found that students’ recreational use of computers to play games, explore the Internet for fun, or chat with friends at home had a negative effect on students’ MCAS reading scores. Similarly, students’ use of computers to create PowerPoint presentations was also negatively associated with MCAS writing scores.

This study of students’ MCAS performance is part of the "Use, Support and Effect of Instructional Technology" (USEIT) study conducted by the Technology and Assessment Study Collaborative of the Lynch School of Education at Boston College. Funded by the US Department of Education, USEIT is a three-year assessment of educational technology that occurred across 22 Massachusetts districts.

The MCAS achievement component of USEIT is the most sophisticated analysis of the relationships between students’ computer use and test performance conducted to date. Building on several shortcomings of past research on this topic, this study collected detailed measures of a variety of student uses of computers in and out of school, controlled for differences in home learning environments, separated effects of teachers’ instructional practices, and controlled for differences in prior achievement by using third grade MCAS scores.

In addition to analyzing the effect of a variety of uses of computers on students’ total MCAS scores, this study also examined the sub-scores provided by the MCAS test.

At a time when standardized testing is playing an increasingly important role in shaping the learning experiences of students and instructional practices of teachers, the researchers believe this study provides evidence that students’ computer use does have an impact on student achievement as measured by tests like MCAS. More importantly, they say, the study demonstrates that different uses of computers have different effects on student learning.

"Specifically, this study finds that students’ use of computers throughout the writing process had a statistically significant positive effect on MCAS writing scores," said the study’s director, Michael Russell of BC’s Lynch School of Education. "Using computers simply

to type in final drafts of essays, however, had no effect on students’ test performance. These findings are consistent with past research and demonstrate the importance of allowing students to use computers to produce rough drafts, edit their papers, and to produce final drafts."

This study also indicates that using computers for recreational purposes had a negative effect on test performance, particularly for reading scores. The authors speculate that this occurs because students who spend more time using computers for recreational purposes at home may spend less time reading at home.

Similarly, the study found that use of computers in school to create presentations was negatively associated with writing test scores. According to the researchers, this negative relationship may result from students spending less time writing during class time and more time creating and revising multimedia projects that contain relatively small amounts of written work. In essence, time spent creating presentations may detract from time available during class to develop students’ writing skills.

"These findings are important for two reasons," said Russell. "First, at a time when schools are under increased pressure to raise test scores, yet are also facing budget shortfalls, this study provides evidence that investments in computers can have positive effects on student achievement. Second, it shows that teachers and students must be thoughtful about how computers are used and what types of learning they expect to impact."

"When examining the effect of computer use on student learning, it is important to consider how well a specific use is aligned with the measure of learning," added the study’s lead author, Laura O’Dwyer of the Graduate School of Education at UMass Lowell, formerly a researcher at Boston College. "While this study found that use of computers to create presentations was negatively associated with writing scores, it does not mean that students should not be creating presentations with computers. Creating presentations may be a positive learning experience, but such effects are not captured by a test like MCAS that measures reading and writing skills."

Adds BC researcher Damian Bebell, the study’s third author, "Although this study finds some interesting effects of students’ use of computers, teachers in this study generally did not use technology to teach. As more and more schools, districts, and states provide teachers and students with their own laptops, it will be interesting to see if teachers are able to use technology more in the classroom and if these uses add to the effects of student technology use."

Michael Russell | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>