Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study shows how next-generation diabetic drugs could work more selectively

28.01.2005


Understanding molecular double action of tzds to reduce side effects



In an attempt to find a new generation of diabetic drugs that will minimize side effects, researchers at the University of Pennsylvania School of Medicine report a new understanding of how thiazolidinediones (TZDs), widely used diabetic medications, work in fat cells. With yearly sales exceeding billions of dollars, TZDs – such as rosiglitazone maleate (Avandia) and pioglitazone hydrochloride (Actos) – help to maintain diabetics’ blood-sugar levels.

In fat cells, TZDs turn on a small set of genes, which aren’t normally turned on, by targeting the receptor PPARã. To tease out how the medications work specifically, the investigators set out to determine the difference between the genes that are ordinarily turned on in fat cells and the genes that are turned on only when diabetics are given the TZDs.


A new study from the laboratory of Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at Penn, has found that PPARã can turn genes both on and off. "What regulates it, in this case, is the drug, which is acting as a switch to turn genes on," says Lazar. "This paper shows that we can separate the two different aspects of the drug’s action on fat cells." These findings appear in the January 28th online edition of Genes & Development and will appear in the February 15th print issue.

Knowing how to turn a gene off may permit researchers to develop drugs that would decrease TZD-related side effects such as weight gain and edema. Indeed, preclinical research is already underway to design drugs called SPPARMs, selective PPARã modulators, which would specifically target genes in fat cells that can turn off the molecular pathways that may lead to these serious side effects.

Working with mouse fat cells, Lazar’s study suggests that one way to get gene-selective actions would be to target this ability to turn off genes without affecting the ability to turn others on. "Since these are separate processes, one through one type of molecular action and one through another, our work shows that this is feasible," says Lazar

How would a SPPARM work? TZDs turn genes on and off by working with molecules called coactivators and corepressors. In addition to its beneficial role, TZDs turn fibroblasts into fat cells by enlisting more coactivators than normal, thus leading to weight gain. The goal is to design a SPPARM that will reduce interaction with corepressors, but increase interaction with coactivators, to separate anti-diabetic effects and weight gain.

"We should be optimistic about finding a new type of drug with the same fat-cell target as TZDs, but which is a selective regulator of gene expression in such a way that will increase the benefit-to-risk ratio of the diabetes treatment," says Lazar.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>