Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thinking of prepositions turns brain ’on’ in different ways

26.01.2005


Parts of the human brain think about the same word differently, at least when it comes to prepositions, according to new language research in stroke patients conducted by scientists at Purdue University and the University of Iowa.



People who speak English often use the same prepositions, words such as "on," "in," "around" and "through," to indicate time as well as location. For example, compare "I will meet you ’at’ the store," to "I will meet you ’at’ 3 p.m." These examples show how time may be thought of metaphorically in terms of space.

Just because it’s the same word, however, doesn’t mean the brain thinks about it the same way, said David Kemmerer, an assistant professor of psychological sciences and linguistics at Purdue’s College of Liberal Arts. "There has been a lot of cognitive neuroscience research about how the brain processes language pertaining to concrete things, such as animals or tools," said Kemmerer, who also is an adjunct faculty member at the University of Iowa’s Department of Neurology, where this research was conducted. "This is the first cognitive neuroscience study to investigate brain regions for spatial and temporal relations – those involving time – used in language.


"I was interested in whether these spatial or temporal prepositions can be dissociated in individuals with brain damage. One might think that if a person’s knowledge of the word ’at’ to describe location is impaired, then his or her ability to use that same preposition to describe time would be disrupted. But we found the words implying time are processed independently."

This research was conducted at the Benton Neuropsychology Laboratory in Iowa’s Carver College of Medicine and was funded by the Purdue Research Foundation and the National Institute for Neurological Disease and Stroke. Kemmerer’s paper is available online at Neuropsychologia. "This study has potential implications for neurology," Kemmerer said. "A clinician could use information about how brain injuries in stroke patients affect specific speech components to develop therapies to help their patients."

The four patients in Kemmerer’s study were used because of similar brain injuries, such as lesions from stroke, in the perisylvian region, which is responsible for language processing. Kemmerer found the stroke subjects who passed the language tests asking about prepositions relevant to time subsequently failed when these same words reflected spatial meanings. For example, the subjects were asked to choose the correct preposition for scenarios such as, "The baseball is ’on/in/against’ the glove." Two subjects did not select "in" as the correct answer. However, they did select "in" as the correct preposition for "It happened ’through/on/in’ 1859."

The other two subjects’ test performances were the opposite.

Kemmerer’s earlier research with Daniel Tranel, professor of neurology at Iowa’s Carver College of Medicine, had confirmed that the left inferior prefrontal and left inferior parietal regions of the brain play a crucial role in processing spatial prepositions. The previous research with Tranel was published in October’s Cognitive Neuropsychology.

This work, which has explored how different types of words are retrieved by different parts of the brain, is part of a larger-scale investigation being carried out by Tranel and his colleagues at the University of Iowa. "For example, we have identified the anterior left temporal lobe as being critical for proper nouns, whereas the left inferior prefrontal/premotor region is important for verbs," Tranel said. "The collaboration between myself, a neuropsychologist, and professor Kemmerer, a neurolinguist, has yielded important breakthroughs in understanding how the brain operates language, due to the unique perspectives that these researchers bring to a common research agenda."

Three of the patients in Kemmerer’s recent study also had damage to their brains’ left hemispheres, in an area known as the parietal lobe, which houses the supramarginal gyrus. This area is involved in spatial meaning, and it is the part of the brain that guides action. For example, the supramarginal gyrus coordinates how a person moves his or her hand toward a glass of water. Previous research with normal brains identifies this area as important also in the knowledge and meaning of prepositions.

The patients with damage to the supramarginal gyrus did not score high on the tasks that evaluated their knowledge of prepositions that dealt with space. In comparison, the fourth patient, who did not have similar damage to this region of the brain, was able to demonstrate complete knowledge of spatial prepositions.

Kemmerer’s next step will be looking at how the brain processes these prepositions in other languages. "If this is true in English, then what about the 6,000 other known languages in the world? This time-and-space metaphor is used from language to language, but how the metaphor is used does vary," he said.

In English, months of the year are treated as containers. People say "in January" or "in February." Other languages treat months as surfaces. For example, "on January" or "on February." Despite the difference, there is a metaphor at work, Kemmerer said.

"The cross-linguistic ubiquity of the metaphor suggests that people are naturally inclined to conceptualize time in terms of space," he said. "Nevertheless, the neuropsychological data suggest that people don’t need to invoke the metaphor every time they use prepositions to talk about time. Just as the word ’breakfast’ doesn’t require one to think of a morning meal in terms of breaking a fast, so the sentence ’She arrived at 1:30’ doesn’t require one to think of time as a series of points on a line."

Amy Patterson-Neubert | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>