Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NYU biologists find new function for pacemaker neurons


A study by New York University researchers reveals a new function for the nerve cells that regulate circadian rhythms of behavior in fruit flies.

The nerve cells, called pacemaker neurons, contain a molecular clock that controls a 24-hour circadian rhythm in activity similar to the rhythms in sleep/wake cycles found in humans and many other organisms. It was previously known that pacemaker neurons receive visual signals to reset their molecular clocks, but scientists did not have any evidence that they transmitted information to their target cells, as most other neurons do.

The current study shows that pacemaker neurons do in fact transmit signals and are required for a rapid behavior, according to the paper, published in the January 20th issue of Neuron. The study was conducted by Esteban O. Mazzoni, a graduate student in NYU’s Biology Department, Biology Professor Claude Desplan, and Assistant Biology Professor Justin Blau. The finding suggests it may be possible to identify genes that can be used to treat problems such as sleep disorders and jet lag.

The researchers examined the role that pacemaker neurons play in helping Drosophila larvae avoid light. Drosophila is a species of fruit fly commonly used in biological research. Fruit fly larvae foraging for food avoid light, presumably to keep away from predators. Unlike adult Drosophila, the larvae only have one structure for gathering visual cues, called Bolwig’s Organ. This organ senses the amount of light in the environment and transmits that information to the pacemaker neurons to reset their molecular clocks.

In the experiments described by Mazzoni, Desplan, and Blau, fly larvae were placed in the center of a Petri dish with one side dark and the other illuminated. Normal larvae exhibited the natural behavior and clustered on the dark side. However, when the larvae had their pacemaker neurons disabled, they were as blind as larvae that had their light-sensing organs removed and distributed themselves evenly between the light and dark halves of the Petri dish.

Further experiments showed that, in addition to transmitting the light information, the pacemaker neurons also modulate the sensitivity of larvae to light, generating a circadian rhythm in visual sensitivity. The experiments revealed that fruit fly larvae are most sensitive to light at dawn and least sensitive toward dusk.

The study demonstrates that pacemaker neurons are doing much more than scientists had suspected. They not only relay visual signals to target cells, but are also act as filters, using their molecular clocks to adjust the intensity of the transmitted signal depending on the time of day.

Almost all of the genes that make up Drosophila’s molecular clock have counterparts with similar functions in mammals. Because of this similarity, it may be possible to identify genes in fruit flies that can be used to treat problems in people, such as sleep disorders and jet lag.

James Devitt | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>