Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligence in men and women is a gray and white matter

21.01.2005


Men and women use different brain areas to achieve similar IQ results, UCI study finds


Frontal views of the human brain.


Side views of the human brain.



While there are essentially no disparities in general intelligence between the sexes, a UC Irvine study has found significant differences in brain areas where males and females manifest their intelligence.

The study shows women having more white matter and men more gray matter related to intellectual skill, revealing that no single neuroanatomical structure determines general intelligence and that different types of brain designs are capable of producing equivalent intellectual performance. “These findings suggest that human evolution has created two different types of brains designed for equally intelligent behavior,” said Richard Haier, professor of psychology in the Department of Pediatrics and longtime human intelligence researcher, who led the study with colleagues at UCI and the University of New Mexico. “In addition, by pinpointing these gender-based intelligence areas, the study has the potential to aid research on dementia and other cognitive-impairment diseases in the brain.”


Study results appear on the online version of NeuroImage.

In general, men have approximately 6.5 times the amount of gray matter related to general intelligence than women, and women have nearly 10 times the amount of white matter related to intelligence than men. Gray matter represents information processing centers in the brain, and white matter represents the networking of – or connections between – these processing centers.

This, according to Rex Jung, a UNM neuropsychologist and co-author of the study, may help to explain why men tend to excel in tasks requiring more local processing (like mathematics), while women tend to excel at integrating and assimilating information from distributed gray-matter regions in the brain, such as required for language facility. These two very different neurological pathways and activity centers, however, result in equivalent overall performance on broad measures of cognitive ability, such as those found on intelligence tests.

The study also identified regional differences with intelligence. For example, 84 percent of gray-matter regions and 86 percent of white-matter regions involved with intellectual performance in women were found in the brain’s frontal lobes, compared to 45 percent and zero percent for males, respectively. The gray matter driving male intellectual performance is distributed throughout more of the brain.

According to the researchers, this more centralized intelligence processing in women is consistent with clinical findings that frontal brain injuries can be more detrimental to cognitive performance in women than men. Studies such as these, Haier and Jung add, someday may help lead to earlier diagnoses of brain disorders in males and females, as well as more effective and precise treatment protocols to address damage to particular regions in the brain.

For this study, UCI and UNM combined their respective neuroimaging technology and subject pools to study brain morphology with magnetic resonance imaging. MRI scanning and cognitive testing involved subjects at UCI and UNM. Using a technique called voxel-based morphometry, Haier and his UCI colleagues converted these MRI pictures into structural brain “maps” that correlated brain tissue volume with IQ.

Dr. Michael T. Alkire and Kevin Head of UCI and Ronald A. Yeo of UNM participated in the study, which was supported in part by the National Institute of Child Health and Human Development.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>