Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligence in men and women is a gray and white matter

21.01.2005


Men and women use different brain areas to achieve similar IQ results, UCI study finds


Frontal views of the human brain.


Side views of the human brain.



While there are essentially no disparities in general intelligence between the sexes, a UC Irvine study has found significant differences in brain areas where males and females manifest their intelligence.

The study shows women having more white matter and men more gray matter related to intellectual skill, revealing that no single neuroanatomical structure determines general intelligence and that different types of brain designs are capable of producing equivalent intellectual performance. “These findings suggest that human evolution has created two different types of brains designed for equally intelligent behavior,” said Richard Haier, professor of psychology in the Department of Pediatrics and longtime human intelligence researcher, who led the study with colleagues at UCI and the University of New Mexico. “In addition, by pinpointing these gender-based intelligence areas, the study has the potential to aid research on dementia and other cognitive-impairment diseases in the brain.”


Study results appear on the online version of NeuroImage.

In general, men have approximately 6.5 times the amount of gray matter related to general intelligence than women, and women have nearly 10 times the amount of white matter related to intelligence than men. Gray matter represents information processing centers in the brain, and white matter represents the networking of – or connections between – these processing centers.

This, according to Rex Jung, a UNM neuropsychologist and co-author of the study, may help to explain why men tend to excel in tasks requiring more local processing (like mathematics), while women tend to excel at integrating and assimilating information from distributed gray-matter regions in the brain, such as required for language facility. These two very different neurological pathways and activity centers, however, result in equivalent overall performance on broad measures of cognitive ability, such as those found on intelligence tests.

The study also identified regional differences with intelligence. For example, 84 percent of gray-matter regions and 86 percent of white-matter regions involved with intellectual performance in women were found in the brain’s frontal lobes, compared to 45 percent and zero percent for males, respectively. The gray matter driving male intellectual performance is distributed throughout more of the brain.

According to the researchers, this more centralized intelligence processing in women is consistent with clinical findings that frontal brain injuries can be more detrimental to cognitive performance in women than men. Studies such as these, Haier and Jung add, someday may help lead to earlier diagnoses of brain disorders in males and females, as well as more effective and precise treatment protocols to address damage to particular regions in the brain.

For this study, UCI and UNM combined their respective neuroimaging technology and subject pools to study brain morphology with magnetic resonance imaging. MRI scanning and cognitive testing involved subjects at UCI and UNM. Using a technique called voxel-based morphometry, Haier and his UCI colleagues converted these MRI pictures into structural brain “maps” that correlated brain tissue volume with IQ.

Dr. Michael T. Alkire and Kevin Head of UCI and Ronald A. Yeo of UNM participated in the study, which was supported in part by the National Institute of Child Health and Human Development.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>