Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved recipe for magnetic brain stimulation

20.01.2005


Transcranial magnetic stimulation (TMS), in which the brain is stimulated using a magnetic coil held outside the skull, has shown some promise in both studying the brain and in treating mental disorders such as depression, epilepsy, and Parkinson’s disease. Such magnetic fields induce tiny electrical currents inside the skull that alter the activity of neural pathways.



While TMS offers the advantages of relative safety and noninvasiveness, the results of its use in both research and treatment have been disappointing. In human studies, neurological effects of TMS have been transient, rarely lasting longer than 30 minutes.

Now, researchers led by John Rothwell of the Institute of Neurology at University College London have devised a new TMS method that produces rapid, consistent, and controllable changes in the motor cortex of humans that last more than an hour. Their findings offer the potential for both more useful research studies using TMS as well as greater therapeutic application.


In their studies, the researchers applied various patterns of repetitive magnetic pulses to the scalps of volunteer subjects. They aimed the pulses at the motor cortex that controls muscle response, because effects on the motor cortex can be objectively measured by recording the amount of electrical muscle response to stimulation. Specifically, the researchers positioned the magnetic coil over the motor cortex area that controls hand movement, and they measured response by determining the amount of muscle response in a small muscle in the subjects’ hands.

The researchers recognized the ethical issue of experimenting on healthy human subjects who had nothing to gain from such experiments. So, they began their studies with stimulations of smaller intensities and lower frequencies than they ultimately used in the experiments. Those initial tests showed that there were no long-lasting or side effects from such stimulations.

In their experiments, the researchers found that they could produce controllable, consistent, and long-lasting effects using short bursts of low-intensity pulses over a period of 20 to 190 seconds. Significantly, the researchers found they could overcome the shortcomings of previous stimulation approaches that produced a mix of both excitation and inhibition of transmission of signals between neurons in the brain. The researchers discovered that the excitatory effect of TMS builds up rapidly, within about a second, while the inhibitory effect builds up within several seconds. Thus, by adjusting the length of stimulation, they could favor excitatory or suppressive effects on the brain.

"We have found these stimulation paradigms to be safe in normal subjects and capable of producing consistent, rapid, and controllable electrophysiological and behavioral changes in the function of the human motor system that outlast the period of stimulation by more than 60 minutes" concluded the scientists.

"The method may prove useful not only in the motor cortex but also in other regions of the brain for both the study of normal human physiology and for therapeutic manipulation of brain plasticity," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>