Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved recipe for magnetic brain stimulation

20.01.2005


Transcranial magnetic stimulation (TMS), in which the brain is stimulated using a magnetic coil held outside the skull, has shown some promise in both studying the brain and in treating mental disorders such as depression, epilepsy, and Parkinson’s disease. Such magnetic fields induce tiny electrical currents inside the skull that alter the activity of neural pathways.



While TMS offers the advantages of relative safety and noninvasiveness, the results of its use in both research and treatment have been disappointing. In human studies, neurological effects of TMS have been transient, rarely lasting longer than 30 minutes.

Now, researchers led by John Rothwell of the Institute of Neurology at University College London have devised a new TMS method that produces rapid, consistent, and controllable changes in the motor cortex of humans that last more than an hour. Their findings offer the potential for both more useful research studies using TMS as well as greater therapeutic application.


In their studies, the researchers applied various patterns of repetitive magnetic pulses to the scalps of volunteer subjects. They aimed the pulses at the motor cortex that controls muscle response, because effects on the motor cortex can be objectively measured by recording the amount of electrical muscle response to stimulation. Specifically, the researchers positioned the magnetic coil over the motor cortex area that controls hand movement, and they measured response by determining the amount of muscle response in a small muscle in the subjects’ hands.

The researchers recognized the ethical issue of experimenting on healthy human subjects who had nothing to gain from such experiments. So, they began their studies with stimulations of smaller intensities and lower frequencies than they ultimately used in the experiments. Those initial tests showed that there were no long-lasting or side effects from such stimulations.

In their experiments, the researchers found that they could produce controllable, consistent, and long-lasting effects using short bursts of low-intensity pulses over a period of 20 to 190 seconds. Significantly, the researchers found they could overcome the shortcomings of previous stimulation approaches that produced a mix of both excitation and inhibition of transmission of signals between neurons in the brain. The researchers discovered that the excitatory effect of TMS builds up rapidly, within about a second, while the inhibitory effect builds up within several seconds. Thus, by adjusting the length of stimulation, they could favor excitatory or suppressive effects on the brain.

"We have found these stimulation paradigms to be safe in normal subjects and capable of producing consistent, rapid, and controllable electrophysiological and behavioral changes in the function of the human motor system that outlast the period of stimulation by more than 60 minutes" concluded the scientists.

"The method may prove useful not only in the motor cortex but also in other regions of the brain for both the study of normal human physiology and for therapeutic manipulation of brain plasticity," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>