Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved recipe for magnetic brain stimulation

20.01.2005


Transcranial magnetic stimulation (TMS), in which the brain is stimulated using a magnetic coil held outside the skull, has shown some promise in both studying the brain and in treating mental disorders such as depression, epilepsy, and Parkinson’s disease. Such magnetic fields induce tiny electrical currents inside the skull that alter the activity of neural pathways.



While TMS offers the advantages of relative safety and noninvasiveness, the results of its use in both research and treatment have been disappointing. In human studies, neurological effects of TMS have been transient, rarely lasting longer than 30 minutes.

Now, researchers led by John Rothwell of the Institute of Neurology at University College London have devised a new TMS method that produces rapid, consistent, and controllable changes in the motor cortex of humans that last more than an hour. Their findings offer the potential for both more useful research studies using TMS as well as greater therapeutic application.


In their studies, the researchers applied various patterns of repetitive magnetic pulses to the scalps of volunteer subjects. They aimed the pulses at the motor cortex that controls muscle response, because effects on the motor cortex can be objectively measured by recording the amount of electrical muscle response to stimulation. Specifically, the researchers positioned the magnetic coil over the motor cortex area that controls hand movement, and they measured response by determining the amount of muscle response in a small muscle in the subjects’ hands.

The researchers recognized the ethical issue of experimenting on healthy human subjects who had nothing to gain from such experiments. So, they began their studies with stimulations of smaller intensities and lower frequencies than they ultimately used in the experiments. Those initial tests showed that there were no long-lasting or side effects from such stimulations.

In their experiments, the researchers found that they could produce controllable, consistent, and long-lasting effects using short bursts of low-intensity pulses over a period of 20 to 190 seconds. Significantly, the researchers found they could overcome the shortcomings of previous stimulation approaches that produced a mix of both excitation and inhibition of transmission of signals between neurons in the brain. The researchers discovered that the excitatory effect of TMS builds up rapidly, within about a second, while the inhibitory effect builds up within several seconds. Thus, by adjusting the length of stimulation, they could favor excitatory or suppressive effects on the brain.

"We have found these stimulation paradigms to be safe in normal subjects and capable of producing consistent, rapid, and controllable electrophysiological and behavioral changes in the function of the human motor system that outlast the period of stimulation by more than 60 minutes" concluded the scientists.

"The method may prove useful not only in the motor cortex but also in other regions of the brain for both the study of normal human physiology and for therapeutic manipulation of brain plasticity," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>