Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved recipe for magnetic brain stimulation

20.01.2005


Transcranial magnetic stimulation (TMS), in which the brain is stimulated using a magnetic coil held outside the skull, has shown some promise in both studying the brain and in treating mental disorders such as depression, epilepsy, and Parkinson’s disease. Such magnetic fields induce tiny electrical currents inside the skull that alter the activity of neural pathways.



While TMS offers the advantages of relative safety and noninvasiveness, the results of its use in both research and treatment have been disappointing. In human studies, neurological effects of TMS have been transient, rarely lasting longer than 30 minutes.

Now, researchers led by John Rothwell of the Institute of Neurology at University College London have devised a new TMS method that produces rapid, consistent, and controllable changes in the motor cortex of humans that last more than an hour. Their findings offer the potential for both more useful research studies using TMS as well as greater therapeutic application.


In their studies, the researchers applied various patterns of repetitive magnetic pulses to the scalps of volunteer subjects. They aimed the pulses at the motor cortex that controls muscle response, because effects on the motor cortex can be objectively measured by recording the amount of electrical muscle response to stimulation. Specifically, the researchers positioned the magnetic coil over the motor cortex area that controls hand movement, and they measured response by determining the amount of muscle response in a small muscle in the subjects’ hands.

The researchers recognized the ethical issue of experimenting on healthy human subjects who had nothing to gain from such experiments. So, they began their studies with stimulations of smaller intensities and lower frequencies than they ultimately used in the experiments. Those initial tests showed that there were no long-lasting or side effects from such stimulations.

In their experiments, the researchers found that they could produce controllable, consistent, and long-lasting effects using short bursts of low-intensity pulses over a period of 20 to 190 seconds. Significantly, the researchers found they could overcome the shortcomings of previous stimulation approaches that produced a mix of both excitation and inhibition of transmission of signals between neurons in the brain. The researchers discovered that the excitatory effect of TMS builds up rapidly, within about a second, while the inhibitory effect builds up within several seconds. Thus, by adjusting the length of stimulation, they could favor excitatory or suppressive effects on the brain.

"We have found these stimulation paradigms to be safe in normal subjects and capable of producing consistent, rapid, and controllable electrophysiological and behavioral changes in the function of the human motor system that outlast the period of stimulation by more than 60 minutes" concluded the scientists.

"The method may prove useful not only in the motor cortex but also in other regions of the brain for both the study of normal human physiology and for therapeutic manipulation of brain plasticity," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>