Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel asthma study shows multiple genetic input required; single-gene solution shot down

19.01.2005


Researchers led by a Brigham and Women’s Hospital/Harvard Medical School team found that wheezing -- a key physiological component of asthma -- requires the interaction of genes in several locations. The work, involving multiple independent verification, demonstrates the complexity of the genetic predisposition to asthma.



The study, "Interacting genetic loci cause airway hyperresponsiveness," appears online in Physiological Genomics, published by the American Physiological Society. "We know that there are both genetic and environmental factors that cause people to develop asthma," Dr. Kate G. Ackerman, the lead researcher, stated. "We have now shown that the genetic inheritance of wheezing, one component of asthma, is extremely complex in our model. This suggests that the discovery of these genes in the human population will be difficult and will require a multi-locus approach."

After the study on the airway hyperresponsiveness (AHR) trait, Dr. David R. Beier, the laboratory leader, said: "In the specific case of asthma, hopefully these results will direct human studies to look for genetic influences in a combinatorial fashion." Using an elaborate mouse model, the researchers found that the wheezing trait unambiguously required the interaction of loci on different chromosomes, yet analysis of the individual chromosomes showed no significant association with wheezing. (A locus is a site on a chromosome where the gene for a particular trait is located.)


Overcoming ’negative’ results of 10 human genome asthma studies

The study, "Interacting genetic loci cause airway hyperresponsiveness," was conducted by Kate G. Ackerman, Hailu Huang, Hartmut Grasemann, Chris Puma, Jonathan B. Singer, Annie E. Hill, Eric Lander, Joseph H. Nadeau, Gary A. Churchill, Jeffrey M. Drazen and David R. Beier. The research appears in the online edition of Physiological Genomics, published by the American Physiological Society.

The Harvard researchers set out to try and determine some of the inherited aspects of asthma, which is becoming "increasingly common" and where "each patient with asthma may have a variable constellation of the different components, and each component" is itself complex. They note that "in over 10 large human studies employing genome-wide analysis to detect asthma susceptibility loci, only two significant linkages have been detected. Of these, only one has identified an association with a specific candidate gene."

Narrowing the genetic focus; "magnitude of effect"

In order to "definitively identify loci associated with a genetically complex trait" (airway hyperresponsiveness, or AHR), the team "used selection for a disease phenotype in a serial backcross" whereby offspring showing certain laboratory-induced asthma-like reactions to stimuli were then used for breeding the next generation. "In this strategy," they explain, "genomic regions that are causally associated with the trait are retained, while unassociated regions are highly likely to be lost as breeding proceeds."

After seven generations of this selective breeding, Ackerman et al. found that several regions derived from the hyperresponsive A/J mouse strain were retained in mice with elevated AHR. Contrary to expectations, they found "no apparent association between inheritance of any single locus with elevated naïve AHR in the phenotypically derived recombinant congenic line." However, according to Beier, "we were fortunate that the analytical approach we were using allowed us to check not just for association of a single locus, but for the possibility that there might be coordination or cooperation between elements involved."

Indeed, the paper reports: "We found a highly significant association with the trait when loci on both chromosomes 2 and 6 were inherited together." Put another way: "…when a pair wise scan for interactions was done, a highly significant association was found for the retained chromosome 2 and 6 regions."

Confirmation from independent project source

While noting "the theoretical possibility that this type of interaction could confound human genetic association studies," the researchers point out that: "A result with this magnitude of effect has not been previously shown using contemporary methods of linkage and association analysis."

Building on their surprising results, the Harvard group was able to test consomic Chromosome Substitution Strains (CSSs) generated by the Whitehead Institute and Case Western Reserve University. Beier noted that the Harvard mice had been selected to demonstrate AHR, but "the beauty of the CSS analysis was that even though their mice weren’t made specifically for airway phenotypes, they could be studied to correlate our results independently." The authors believe their study is one of the first instances in which CSSs have been utilized as a new tool to independently validate a quantitative trait linkage (QTL) analysis study.

Next steps and implications for human asthma research

The paper concludes: "The identification of genomic regions containing loci causally associated with AHR, and the demonstration that this trait requires their interaction, has important implications for the dissection of the genetic etiology of asthma in humans." The authors also identified several other areas where action is indicated:

  • Besides asthma, the authors say their "study has important implications for the genetic analysis of common diseases in a human population."
  • The retained regions on chromosomes 2 and 6 "have conserved synteny distributed among 7 human chromosomes. A comprehensive analysis of these regions using association analysis may prove fruitful for uncovering additional loci that contribute to" human asthma.
  • Since both mouse lines had a lesser degree of AHR than the parental strain, this "suggests the maximally severe phenotype depends on inheritance of more than the two interacting loci we have identified."

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>