Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel asthma study shows multiple genetic input required; single-gene solution shot down

19.01.2005


Researchers led by a Brigham and Women’s Hospital/Harvard Medical School team found that wheezing -- a key physiological component of asthma -- requires the interaction of genes in several locations. The work, involving multiple independent verification, demonstrates the complexity of the genetic predisposition to asthma.



The study, "Interacting genetic loci cause airway hyperresponsiveness," appears online in Physiological Genomics, published by the American Physiological Society. "We know that there are both genetic and environmental factors that cause people to develop asthma," Dr. Kate G. Ackerman, the lead researcher, stated. "We have now shown that the genetic inheritance of wheezing, one component of asthma, is extremely complex in our model. This suggests that the discovery of these genes in the human population will be difficult and will require a multi-locus approach."

After the study on the airway hyperresponsiveness (AHR) trait, Dr. David R. Beier, the laboratory leader, said: "In the specific case of asthma, hopefully these results will direct human studies to look for genetic influences in a combinatorial fashion." Using an elaborate mouse model, the researchers found that the wheezing trait unambiguously required the interaction of loci on different chromosomes, yet analysis of the individual chromosomes showed no significant association with wheezing. (A locus is a site on a chromosome where the gene for a particular trait is located.)


Overcoming ’negative’ results of 10 human genome asthma studies

The study, "Interacting genetic loci cause airway hyperresponsiveness," was conducted by Kate G. Ackerman, Hailu Huang, Hartmut Grasemann, Chris Puma, Jonathan B. Singer, Annie E. Hill, Eric Lander, Joseph H. Nadeau, Gary A. Churchill, Jeffrey M. Drazen and David R. Beier. The research appears in the online edition of Physiological Genomics, published by the American Physiological Society.

The Harvard researchers set out to try and determine some of the inherited aspects of asthma, which is becoming "increasingly common" and where "each patient with asthma may have a variable constellation of the different components, and each component" is itself complex. They note that "in over 10 large human studies employing genome-wide analysis to detect asthma susceptibility loci, only two significant linkages have been detected. Of these, only one has identified an association with a specific candidate gene."

Narrowing the genetic focus; "magnitude of effect"

In order to "definitively identify loci associated with a genetically complex trait" (airway hyperresponsiveness, or AHR), the team "used selection for a disease phenotype in a serial backcross" whereby offspring showing certain laboratory-induced asthma-like reactions to stimuli were then used for breeding the next generation. "In this strategy," they explain, "genomic regions that are causally associated with the trait are retained, while unassociated regions are highly likely to be lost as breeding proceeds."

After seven generations of this selective breeding, Ackerman et al. found that several regions derived from the hyperresponsive A/J mouse strain were retained in mice with elevated AHR. Contrary to expectations, they found "no apparent association between inheritance of any single locus with elevated naïve AHR in the phenotypically derived recombinant congenic line." However, according to Beier, "we were fortunate that the analytical approach we were using allowed us to check not just for association of a single locus, but for the possibility that there might be coordination or cooperation between elements involved."

Indeed, the paper reports: "We found a highly significant association with the trait when loci on both chromosomes 2 and 6 were inherited together." Put another way: "…when a pair wise scan for interactions was done, a highly significant association was found for the retained chromosome 2 and 6 regions."

Confirmation from independent project source

While noting "the theoretical possibility that this type of interaction could confound human genetic association studies," the researchers point out that: "A result with this magnitude of effect has not been previously shown using contemporary methods of linkage and association analysis."

Building on their surprising results, the Harvard group was able to test consomic Chromosome Substitution Strains (CSSs) generated by the Whitehead Institute and Case Western Reserve University. Beier noted that the Harvard mice had been selected to demonstrate AHR, but "the beauty of the CSS analysis was that even though their mice weren’t made specifically for airway phenotypes, they could be studied to correlate our results independently." The authors believe their study is one of the first instances in which CSSs have been utilized as a new tool to independently validate a quantitative trait linkage (QTL) analysis study.

Next steps and implications for human asthma research

The paper concludes: "The identification of genomic regions containing loci causally associated with AHR, and the demonstration that this trait requires their interaction, has important implications for the dissection of the genetic etiology of asthma in humans." The authors also identified several other areas where action is indicated:

  • Besides asthma, the authors say their "study has important implications for the genetic analysis of common diseases in a human population."
  • The retained regions on chromosomes 2 and 6 "have conserved synteny distributed among 7 human chromosomes. A comprehensive analysis of these regions using association analysis may prove fruitful for uncovering additional loci that contribute to" human asthma.
  • Since both mouse lines had a lesser degree of AHR than the parental strain, this "suggests the maximally severe phenotype depends on inheritance of more than the two interacting loci we have identified."

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>