Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A site for sore eyes: New target for allergies found under the eyelid

14.01.2005


Scientists have found a protein in the eye which plays a critical role in how an allergic response develops over a 24-hour period. The University College London (UCL) team hope their discovery will pave the way for new treatments for allergic diseases such as asthma, eczema and hay fever.



In a study published today in the online edition of the Journal of Clinical Investigation, Professor Santa Jeremy Ono and colleagues from UCL’s Institute of Ophthalmology and Moorfields Eye Hospital found that the macrophage inflammatory protein-1a, known as MIP-1a and located in the eye, plays a crucial role in the early stages of an allergic response. Their findings suggest that drugs that block the binding of MIP-1a to its receptors could help in the treatment of ocular allergy and other allergic diseases.

Allergies affect over one third of individuals in the Western world, with 17 million people in the UK currently suffering from asthma, conjunctivitis, eczema or hay fever.


Allergic responses develop in two phases. The first phase involves an immediate hypersensitivity reaction within one hour of exposure to an allergen, where mast cells (key cells responsible for causing allergies) release histamine and other molecules such as chemokines. MIP-1a is one such chemokine.

The second phase, which occurs 12 to 24 hours after exposure, involves the recruitment of inflammatory cells to the site of inflammation. While the role of chemokines in the second phase is well characterized, little is known about how chemokines contribute to the first phase of an allergic disease.

Ono and colleagues discovered that within the clear membrane that coats the inner surface of the eyelid and outer surface of the eye, known as the conjunctiva, MIP-1a was essential in the initial stages of development of an allergic response.

MIP-1a was also necessary for the second phase of the disease, which is associated with chronic allergy. It is likely that MIP-1a or similar molecules are also essential for the development of other allergies such as asthma, dermatitis or anaphylaxis, a body-wide allergy that left untreated can result in death.

The UCL study suggests that drugs that block the binding of MIP-1a to its receptors CCR1 or CCR5 may have therapeutic value in the treatment of ocular allergy and possibly other allergic diseases.

Professor Ono says: "Current treatments for severe eye allergy are either ineffective or have associated side effects, such as glaucoma and cataract formation, so our study will be of interest to allergists and ophthalmologists. Many current allergy treatments target symptoms rather than the cause of the disease, meaning this discovery could constitute a new target for the treatment of allergic diseases.

"We are currently carrying out studies to test the efficacy of existing drugs that block MIP-1a and similar molecules in the therapy of allergic diseases. Clinical trials are anticipated shortly and if they prove effective, these studies may lead to new therapies within the next 5 to 7 years."

Jenny Gimpel | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>