Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A site for sore eyes: New target for allergies found under the eyelid

14.01.2005


Scientists have found a protein in the eye which plays a critical role in how an allergic response develops over a 24-hour period. The University College London (UCL) team hope their discovery will pave the way for new treatments for allergic diseases such as asthma, eczema and hay fever.



In a study published today in the online edition of the Journal of Clinical Investigation, Professor Santa Jeremy Ono and colleagues from UCL’s Institute of Ophthalmology and Moorfields Eye Hospital found that the macrophage inflammatory protein-1a, known as MIP-1a and located in the eye, plays a crucial role in the early stages of an allergic response. Their findings suggest that drugs that block the binding of MIP-1a to its receptors could help in the treatment of ocular allergy and other allergic diseases.

Allergies affect over one third of individuals in the Western world, with 17 million people in the UK currently suffering from asthma, conjunctivitis, eczema or hay fever.


Allergic responses develop in two phases. The first phase involves an immediate hypersensitivity reaction within one hour of exposure to an allergen, where mast cells (key cells responsible for causing allergies) release histamine and other molecules such as chemokines. MIP-1a is one such chemokine.

The second phase, which occurs 12 to 24 hours after exposure, involves the recruitment of inflammatory cells to the site of inflammation. While the role of chemokines in the second phase is well characterized, little is known about how chemokines contribute to the first phase of an allergic disease.

Ono and colleagues discovered that within the clear membrane that coats the inner surface of the eyelid and outer surface of the eye, known as the conjunctiva, MIP-1a was essential in the initial stages of development of an allergic response.

MIP-1a was also necessary for the second phase of the disease, which is associated with chronic allergy. It is likely that MIP-1a or similar molecules are also essential for the development of other allergies such as asthma, dermatitis or anaphylaxis, a body-wide allergy that left untreated can result in death.

The UCL study suggests that drugs that block the binding of MIP-1a to its receptors CCR1 or CCR5 may have therapeutic value in the treatment of ocular allergy and possibly other allergic diseases.

Professor Ono says: "Current treatments for severe eye allergy are either ineffective or have associated side effects, such as glaucoma and cataract formation, so our study will be of interest to allergists and ophthalmologists. Many current allergy treatments target symptoms rather than the cause of the disease, meaning this discovery could constitute a new target for the treatment of allergic diseases.

"We are currently carrying out studies to test the efficacy of existing drugs that block MIP-1a and similar molecules in the therapy of allergic diseases. Clinical trials are anticipated shortly and if they prove effective, these studies may lead to new therapies within the next 5 to 7 years."

Jenny Gimpel | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>