Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows nanoshells ideal as chemical nanosensors

12.01.2005


’Nanoshells’ enhance sensitivity to chemical detection by factor of 10 billion



New research published in the Proceedings of the National Academy of Science finds that tailored nanoparticles known as nanoshells can enhance chemical sensing by as much as 10 billion times. That makes them about 10,000 times more effective at Raman scattering than traditional methods.

When molecules and materials scatter light, a small fraction of the light interacts in such a way that it allows scientists to determine their detailed chemical makeup. This property, known as Raman scattering, is used by medical researchers, drug designers, chemists and other scientists to determine what materials are made of. An enormous limitation in the use of Raman scattering has been its extremely weak sensitivity. While it was discovered almost three decades ago that roughened metallic surfaces could enhance Raman scattering signals by factors of 1 million, this "surface-enhancement" effect has been difficult to control, predict, and reproduce for practical sensing applications. Now, Rice researchers have shown that nanoshells can provide large, clean, reproducible enhancements of this effect, opening the door for new, all-optical sensing applications.


"Not only did we find that nanoshells are extremely effective at magnifying the Raman signature of molecules, we found each individual nanoshell acts as an independent Raman enhancer," said lead researcher Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering, Professor of Chemistry and Director of Rice’s Laboratory of Nanophotonics. "That creates an opportunity to design all-optical nanoscale sensors -- essentially new molecular-level diagnostic instruments -- that could detect as little as a few molecules of a target substance, which could be anything from a drug molecule or a key disease protein to a deadly chemical agent."

About 1/20th the size of a red blood cell, nanoshells are about the size of a virus. They are ball-shaped and consist of a core of non-conducting glass that is covered by a metallic shell, typically either gold or silver. The metal shell "captures" passing light and focuses it, a property that directly leads to the enormous Raman enhancements observed. Furthermore, nanoshells can be "tuned" to interact with specific wavelengths of light by varying the thickness of their shells. This tunability allows for the Raman enhancements to be optimized for specific wavelengths of light.

Discovered by Halas at Rice in the 1990s, nanoshells are already being developed for applications including cancer diagnosis, cancer therapy, diagnosis and testing for proteins associated with Alzheimer’s disease, drug delivery and rapid whole-blood immunoassay.

In the current study, Halas and former graduate student Joseph B. Jackson, now with Nanospectra Biosciences, Inc., created thin films of nanoshells deposited atop plates of glass. Films with various densities were studied, as were films containing both silver and gold nanoshells.

Through painstaking analysis, Halas and Jackson showed that the nanoshells’ 10 billion-fold increase in Raman effect was due entirely to the interactions of light with individual nanoshells. This is markedly different from the pattern exhibited by pure gold or silver nanoparticle films. In that case, the Raman enhancement is an aggregate effect, due to the presence of localized "junctions" or "hot spots" between metallic regions of the metallic film substrate.

The finding that individual nanoshells can vastly enhance the Raman effect opens the door for biosensor designs that use a single nanoshell, something that could prove useful for engineers who are trying to probe the chemical processes within small structures such as individual cells, or for the detection of very small amounts of a material, like a few molecules of a deadly biological or chemical agent.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>