Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows nanoshells ideal as chemical nanosensors


’Nanoshells’ enhance sensitivity to chemical detection by factor of 10 billion

New research published in the Proceedings of the National Academy of Science finds that tailored nanoparticles known as nanoshells can enhance chemical sensing by as much as 10 billion times. That makes them about 10,000 times more effective at Raman scattering than traditional methods.

When molecules and materials scatter light, a small fraction of the light interacts in such a way that it allows scientists to determine their detailed chemical makeup. This property, known as Raman scattering, is used by medical researchers, drug designers, chemists and other scientists to determine what materials are made of. An enormous limitation in the use of Raman scattering has been its extremely weak sensitivity. While it was discovered almost three decades ago that roughened metallic surfaces could enhance Raman scattering signals by factors of 1 million, this "surface-enhancement" effect has been difficult to control, predict, and reproduce for practical sensing applications. Now, Rice researchers have shown that nanoshells can provide large, clean, reproducible enhancements of this effect, opening the door for new, all-optical sensing applications.

"Not only did we find that nanoshells are extremely effective at magnifying the Raman signature of molecules, we found each individual nanoshell acts as an independent Raman enhancer," said lead researcher Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering, Professor of Chemistry and Director of Rice’s Laboratory of Nanophotonics. "That creates an opportunity to design all-optical nanoscale sensors -- essentially new molecular-level diagnostic instruments -- that could detect as little as a few molecules of a target substance, which could be anything from a drug molecule or a key disease protein to a deadly chemical agent."

About 1/20th the size of a red blood cell, nanoshells are about the size of a virus. They are ball-shaped and consist of a core of non-conducting glass that is covered by a metallic shell, typically either gold or silver. The metal shell "captures" passing light and focuses it, a property that directly leads to the enormous Raman enhancements observed. Furthermore, nanoshells can be "tuned" to interact with specific wavelengths of light by varying the thickness of their shells. This tunability allows for the Raman enhancements to be optimized for specific wavelengths of light.

Discovered by Halas at Rice in the 1990s, nanoshells are already being developed for applications including cancer diagnosis, cancer therapy, diagnosis and testing for proteins associated with Alzheimer’s disease, drug delivery and rapid whole-blood immunoassay.

In the current study, Halas and former graduate student Joseph B. Jackson, now with Nanospectra Biosciences, Inc., created thin films of nanoshells deposited atop plates of glass. Films with various densities were studied, as were films containing both silver and gold nanoshells.

Through painstaking analysis, Halas and Jackson showed that the nanoshells’ 10 billion-fold increase in Raman effect was due entirely to the interactions of light with individual nanoshells. This is markedly different from the pattern exhibited by pure gold or silver nanoparticle films. In that case, the Raman enhancement is an aggregate effect, due to the presence of localized "junctions" or "hot spots" between metallic regions of the metallic film substrate.

The finding that individual nanoshells can vastly enhance the Raman effect opens the door for biosensor designs that use a single nanoshell, something that could prove useful for engineers who are trying to probe the chemical processes within small structures such as individual cells, or for the detection of very small amounts of a material, like a few molecules of a deadly biological or chemical agent.

Jade Boyd | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>