Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain tumor study reveals why treatment efforts fail in genetic disorder

03.01.2005


Drugs used to treat the tumors common in people with a disorder called neurofibromatosis 1 rarely work, and scientists now know why. The chemotherapy drugs target a group of related proteins, call RAS proteins, which are thought to be responsible for these tumors. But researchers at Washington University School of Medicine in St. Louis found that the disease affects only one member of the protein family, and it happens to be the one form of RAS that does not respond well to these particular treatments.



The study, which will appear in the Jan. 1 issue of the journal Cancer Research, suggests where researchers should now look for more promising approaches to treating neurofibromatosis tumors, and may help scientists understand other cancers related to RAS. "The downside is our study proves we’re not using the right therapies for this particular problem," says principal investigator David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology and professor of genetics and of pediatrics. "But there’s a chance to make lemonade out of this lemon: We now have a rational reason for why these drugs aren’t working, so we should be able to explore new, more effective treatment options."

About one in 4,000 newborns has neurofibromatosis 1, in which every cell in the body has one normal and one mutated copy of a gene called NF1. If a cell’s normal copy also is mutated, tumors can form. Children with neurofibromatosis 1 are therefore predisposed to developing a variety of serious complications as they grow older, including skin, spine and brain cancers.


Scientists previously found that RAS proteins become overly active when both copies of the NF1 gene are abnormal in tumors from patients with neurofibromatosis 1. So physicians have tried treating these tumors with drugs that prevent RAS activity. Unfortunately, the results have been disappointing.

To understand why, Gutmann’s team examined whether all forms of RAS are overly active in mouse cells lacking both copies of the Nf1 gene. They specifically examined support cells in the brain called astrocytes, which often are affected by neurofibromatosis 1. Surprisingly, only one member of the protein family, K-RAS, was significantly affected, suggesting it is an important factor in this disease.

Moreover, when the team activated K-RAS in normal astrocytes, the cells developed many of the same characteristics and activities as those lacking Nf1. For example, both types of abnormal astrocytes were round and dense, grew and multiplied at a similar rate and moved around more than normal. They also discovered they could reverse abnormalities in cells without Nf1 by decreasing K-RAS activity.

K-RAS activation also mimicked Nf1 loss in live mice. Gutmann’s team previously discovered that mice without Nf1 genes in their astrocytes grow an abnormally large number of astrocytes in their brains, but they don’t develop tumors unless all other brain cells are missing at least one copy of the gene. In this study, the researchers found that K-RAS follows a similar pattern: When the protein was overly active in astrocytes of mice with two normal copies of Nf1, the cells multiplied but did not develop into tumors; however, tumors did form when K-RAS was activated in astrocytes of mice lacking one copy of Nf1 in all cells.

Another form of RAS previously suspected to be linked to neurofibromatosis, called H-RAS, did not mimic loss of the Nf1 gene in tissue culture or in live animals. "Collectively, these results suggest that K-RAS activation, specifically, is the biological equivalent of Nf1 loss in astrocytes," Gutmann says. "If we can understand what K-RAS does that’s unique, we should be able to develop targeted therapies."

The research team already has made progress toward that goal. Too much RAS and too little Nf1 are both known to result in a cascade of events, including activation of another protein called Rac1, which in turn activates LIM kinase. Gutmann and his colleagues found that that effect could be mimicked in normal astrocytes by selectively activating K-RAS. Activating H-RAS did not trigger the cascade. "Though K-RAS doesn’t respond well to available chemotherapy drugs, one of the proteins it interacts with might," Gutmann says. "By showing that K-RAS activates a pathway that is unique from the pathways activated by other RAS molecules, our findings may lead us to a variety of better treatment targets."

Gila Z. Reckess | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>