Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain tumor study reveals why treatment efforts fail in genetic disorder

03.01.2005


Drugs used to treat the tumors common in people with a disorder called neurofibromatosis 1 rarely work, and scientists now know why. The chemotherapy drugs target a group of related proteins, call RAS proteins, which are thought to be responsible for these tumors. But researchers at Washington University School of Medicine in St. Louis found that the disease affects only one member of the protein family, and it happens to be the one form of RAS that does not respond well to these particular treatments.



The study, which will appear in the Jan. 1 issue of the journal Cancer Research, suggests where researchers should now look for more promising approaches to treating neurofibromatosis tumors, and may help scientists understand other cancers related to RAS. "The downside is our study proves we’re not using the right therapies for this particular problem," says principal investigator David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology and professor of genetics and of pediatrics. "But there’s a chance to make lemonade out of this lemon: We now have a rational reason for why these drugs aren’t working, so we should be able to explore new, more effective treatment options."

About one in 4,000 newborns has neurofibromatosis 1, in which every cell in the body has one normal and one mutated copy of a gene called NF1. If a cell’s normal copy also is mutated, tumors can form. Children with neurofibromatosis 1 are therefore predisposed to developing a variety of serious complications as they grow older, including skin, spine and brain cancers.


Scientists previously found that RAS proteins become overly active when both copies of the NF1 gene are abnormal in tumors from patients with neurofibromatosis 1. So physicians have tried treating these tumors with drugs that prevent RAS activity. Unfortunately, the results have been disappointing.

To understand why, Gutmann’s team examined whether all forms of RAS are overly active in mouse cells lacking both copies of the Nf1 gene. They specifically examined support cells in the brain called astrocytes, which often are affected by neurofibromatosis 1. Surprisingly, only one member of the protein family, K-RAS, was significantly affected, suggesting it is an important factor in this disease.

Moreover, when the team activated K-RAS in normal astrocytes, the cells developed many of the same characteristics and activities as those lacking Nf1. For example, both types of abnormal astrocytes were round and dense, grew and multiplied at a similar rate and moved around more than normal. They also discovered they could reverse abnormalities in cells without Nf1 by decreasing K-RAS activity.

K-RAS activation also mimicked Nf1 loss in live mice. Gutmann’s team previously discovered that mice without Nf1 genes in their astrocytes grow an abnormally large number of astrocytes in their brains, but they don’t develop tumors unless all other brain cells are missing at least one copy of the gene. In this study, the researchers found that K-RAS follows a similar pattern: When the protein was overly active in astrocytes of mice with two normal copies of Nf1, the cells multiplied but did not develop into tumors; however, tumors did form when K-RAS was activated in astrocytes of mice lacking one copy of Nf1 in all cells.

Another form of RAS previously suspected to be linked to neurofibromatosis, called H-RAS, did not mimic loss of the Nf1 gene in tissue culture or in live animals. "Collectively, these results suggest that K-RAS activation, specifically, is the biological equivalent of Nf1 loss in astrocytes," Gutmann says. "If we can understand what K-RAS does that’s unique, we should be able to develop targeted therapies."

The research team already has made progress toward that goal. Too much RAS and too little Nf1 are both known to result in a cascade of events, including activation of another protein called Rac1, which in turn activates LIM kinase. Gutmann and his colleagues found that that effect could be mimicked in normal astrocytes by selectively activating K-RAS. Activating H-RAS did not trigger the cascade. "Though K-RAS doesn’t respond well to available chemotherapy drugs, one of the proteins it interacts with might," Gutmann says. "By showing that K-RAS activates a pathway that is unique from the pathways activated by other RAS molecules, our findings may lead us to a variety of better treatment targets."

Gila Z. Reckess | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>