Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding feathers early may enhance sex appeal, new songbird study shows

27.12.2004


Birds that migrate early in the season may have a distinct advantage when it comes to attracting the opposite sex, say researchers from Queen’s University and the Smithsonian Institution.



And it’s all about the feathers.

Researchers were surprised to discover that the timing of a male songbird’s reproduction cycle affects the colour of his feathers and may have important implications for his success in attracting mates. When migratory songbirds raise their young extremely late in the summer, many don’t have time to molt (shed their feathers and replace with new growth) before heading south, the new study shows.


"This means they must molt at stopover sites on their journey to tropical winter habitats," explains Ryan Norris, who conducted the research as part of his PhD in biology at Queen’s, supervised by Professors Laurene Ratcliffe (Queen’s Biology) and Peter Marra (Smithsonian Environmental Research Center).

"Their replacement feathers, grown en route, are less colourful than those of birds that had time to molt before migration, which may put them at a disadvantage in attracting females the following breeding season," says Dr. Norris. "Both findings – that molting in some songbirds occurs after migration has begun, and that their new feathers are duller in colour – were surprising."

The study will be published Dec. 24 in the journal Science.

Until now scientists have assumed that most species of migratory birds molt before they migrate. The team discovered that in fact some begin their migration, molt at a "stopover" site, then continue to their winter habitat. Forty per cent of the male American Redstarts in the study molted in their tail feathers at areas up to 2000 kilometers south of their breeding grounds.

By measuring stable hydrogen isotopes in the newly grown feathers when birds returned the following spring to breed at the Queen’s University Biology Station north of Kingston, the researchers were able to determine the approximate region where molting had occurred. And when the feathers were analyzed with a spectrometer measuring how much light of different wavelengths is reflected, significant differences in colour were also detected.

A key indicator of the songbirds’ health and quality is the concentration of carotenoid in the feathers, which causes orange-red light to be reflected in their feathers. Physiological stress during molting can reduce carotenoid deposits in the feathers.

"Studies of other bird species have shown that females prefer males with higher concentrations of carotenoids, and thus brighter, more intense colours," says Queen’s biologist Bob Montgomerie, who did the colour analysis of feathers for this project. "What we didn’t know until now is that birds’ colours in any given year may be affected by what happened to them in the previous breeding season.

"That’s exciting because ’cost of reproduction’ is a general, organism-wide problem of many species, not just birds."

The other member of the research team from Queen’s is geology professor Kurt Kyser, director of the university’s Facility for Isotope Research, where the stable isotope measurements were conducted.

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>