Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human see, human do

22.12.2004


Ballet dancers’ brains reveal the art of imitation

Scientists have discovered that a system in our brain which responds to actions we are watching, such as a dancer’s delicate pirouette or a masterful martial arts move, reacts differently if we are also skilled at doing the move. The University College London (UCL) study, published in the latest online edition of Cerebral Cortex, may help in the rehabilitation of people whose motor skills are damaged by stroke, and suggests that athletes and dancers could continue to mentally train while they are physically injured.

In the UCL study, dancers from the Royal Ballet and experts in capoeira - a Brazilian martial arts form - were asked to watch videos of ballet and capoeira movements being performed while their brain activity was measured in a MRI scanner. The same videos were shown to normal volunteers while their brains were scanned.



The UCL team found greater activity in areas of the brain collectively known as the ’mirror system’ when the experts viewed movements that they had been trained to perform compared to movements they had not. The same areas in non-expert volunteers brains didn’t care what dance style they saw.

While previous studies have found that the system contains mirror neurons or brain cells which fire up both when we perform an action and when we observe it, the new study shows that this system is fine tuned to each person’s ’motor repertoire’ or range of physical skills. The mirror system was first discovered in animals and has now been identified in humans. It is thought to play a key role in helping us to understand other people’s actions, and may also help in learning how to imitate them.

Professor Patrick Haggard of UCL’s Institute of Cognitive Neuroscience says: "We’ve shown that the mirror system is finely tuned to an individual’s skills. A professional ballet dancer’s brain will understand a ballet move in a way that a capoiera expert’s brain will not. Our findings suggest that once the brain has learned a skill, it may simulate the skill without even moving, through simple observation. An injured dancer might be able to maintain their skill despite being temporarily unable to move, simply by watching others dance. This concept could be used both during sports training and in maintaining and restoring movement ability in people who are injured."

Dr Daniel Glaser of UCL’s Institute of Cognitive Neuroscience says: "Our study is as much a case of ’monkey do, monkey see’ as the other way round. People’s brains appear to respond differently when they are watching a movement, such as a sport, if they can do the moves themselves.

"When we watch a sport, our brain performs an internal simulation of the actions, as if it were sending the same movement instructions to our own body. But for those sports commentators who are ex-athletes, the mirror system is likely to be even more active because their brains may re-enact the moves they once made. This might explain why they get so excited while watching the game!"

Deborah Bull, Creative Director at Royal Opera House (ROH2), says: "We are delighted to be working with Patrick Haggard, our Associate Scientist, on this fascinating area of research. As a former dancer, I have long been intrigued by the different ways in which people respond to dance. Through this and future research, I hope we’ll begin to understand more about the unique ways in which the human body can communicate without words."

Jenny Gimpel | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>