Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is everything for optimum combined cancer therapy

21.12.2004


Agents designed to attack blood vessels that feed a growing tumor are effective against tumor growth in laboratory experiments. However, results of early clinical trials with these inhibitors have not yet exhibited the same success observed in animal models. Now, a new study published in the December issue of Cancer Cell demonstrates that a unique time period exists during which combined radiation and antiangiogenic therapy can exert a remarkable synergistic effect that significantly slows tumor growth.



Recent clinical studies have suggested that antiangiogenic therapy is most effective when delivered in combination with radiation or chemotherapy. However, evidence supporting combined therapies has been inconsistent. Dr. Rakesh K. Jain from the Steele Laboratory for Tumor Biology at Massachusetts General Hospital and Harvard Medical School led a study to investigate whether the timing of combined therapy impacts treatment effectiveness.

Mice implanted with gliomas were treated with radiation, with the antiangiogenic agent DC101, or with combinations of the two. DC101 blocks the action of VEGF, a protein that stimulates blood vessel formation and is found at very high levels in gliomas. Blood vessels in gliomas and many other tumors are abnormal and do not deliver oxygen to tumor cells as efficiently as normal blood vessels do in normal tissues. This is clinically significant because lack of oxygen, or hypoxia, can make a tumor resistant to radiation therapy.


The researchers found that antiangiogenic therapy passively pruned some of the immature blood vessels of tumors and actively recruited pericytes, cells that support a blood vessel, to temporarily stabilize the tumor vasculature. During this period of vascular normalization, tumor hypoxia was substantially decreased and the effect of radiation treatment was enhanced. These results demonstrate that antiangiogenic therapy not only reduces the density of blood vessels in a tumor but, for a short time, makes the existing tumor vasculature more like that of normal tissues, thereby facilitating oxygen delivery to the tumor and enhancing the effects of radiation treatment.

"The time course of this vascular normalization should be taken into account when radiation and antiangiogenic therapy are combined," suggests Dr. Jain. He further speculates that, "If the time course of vascular changes induced by VEGF blockade is taken into account, one might achieve a survival advantage greater than the five months seen in the recent landmark clinical trial of combination therapy."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>