Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is everything for optimum combined cancer therapy

21.12.2004


Agents designed to attack blood vessels that feed a growing tumor are effective against tumor growth in laboratory experiments. However, results of early clinical trials with these inhibitors have not yet exhibited the same success observed in animal models. Now, a new study published in the December issue of Cancer Cell demonstrates that a unique time period exists during which combined radiation and antiangiogenic therapy can exert a remarkable synergistic effect that significantly slows tumor growth.



Recent clinical studies have suggested that antiangiogenic therapy is most effective when delivered in combination with radiation or chemotherapy. However, evidence supporting combined therapies has been inconsistent. Dr. Rakesh K. Jain from the Steele Laboratory for Tumor Biology at Massachusetts General Hospital and Harvard Medical School led a study to investigate whether the timing of combined therapy impacts treatment effectiveness.

Mice implanted with gliomas were treated with radiation, with the antiangiogenic agent DC101, or with combinations of the two. DC101 blocks the action of VEGF, a protein that stimulates blood vessel formation and is found at very high levels in gliomas. Blood vessels in gliomas and many other tumors are abnormal and do not deliver oxygen to tumor cells as efficiently as normal blood vessels do in normal tissues. This is clinically significant because lack of oxygen, or hypoxia, can make a tumor resistant to radiation therapy.


The researchers found that antiangiogenic therapy passively pruned some of the immature blood vessels of tumors and actively recruited pericytes, cells that support a blood vessel, to temporarily stabilize the tumor vasculature. During this period of vascular normalization, tumor hypoxia was substantially decreased and the effect of radiation treatment was enhanced. These results demonstrate that antiangiogenic therapy not only reduces the density of blood vessels in a tumor but, for a short time, makes the existing tumor vasculature more like that of normal tissues, thereby facilitating oxygen delivery to the tumor and enhancing the effects of radiation treatment.

"The time course of this vascular normalization should be taken into account when radiation and antiangiogenic therapy are combined," suggests Dr. Jain. He further speculates that, "If the time course of vascular changes induced by VEGF blockade is taken into account, one might achieve a survival advantage greater than the five months seen in the recent landmark clinical trial of combination therapy."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

23.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>