Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury on the horizon

21.12.2004


University of Nevada study finds plants assimilate mercury from air

Mercury gets around. A naturally occurring contaminant, mercury is found in water and soil but scientists are not exactly sure how mercury makes its way through the environment. Concerns over increasing levels of mercury contamination have sparked fish consumption advisories in certain areas.

Knowing how mercury ends up in these locations, however, is an area of concern for environmental scientists. Researchers at the University of Nevada, Reno recently discovered that plants play a significant role in how mercury travels.



“Based on previous studies, what we originally thought was that mercury in soil would be absorbed through a tree’s roots, then released through the tree’s leaves into the air,” said Jody Ericksen, a Nevada graduate student who studied the contaminant for her master’s degree in Environmental Science and Health. “We were wrong. What happened is that the plants absorbed the mercury from the air.”

According to Nevada researchers, once a tree’s leaves contain mercury, those leaves eventually fall off, decay and mercury goes back into the soil, air and, ultimately, water.

According to Mae Gustin, associate professor in the university’s Department of Natural Resources and Environmental Science, the results of the study could have global implications.

Mercury from coal-fired power plants, or from areas such as Nevada that have high levels of naturally occurring mercury, can be in the air for six to 12 months and can cross continents.

“Researchers who model how mercury travels through the environment tell us that even if the United States turned off all of its coal-fired power plants, we would still have mercury being deposited here because of China’s mercury emissions,” Gustin said. “For mercury controls to make a difference there has to be a global effort.”

The researchers’ study was published in a recent issue of Environmental Science & Technology, one of the most prestigious environmental science journals.

The study was funded with a grant from the EPA Experimental Program to Stimulate Competitive Research. Collaborators on the project included: Dave Schorran and James Coleman of the Desert Research Institute; Dale Johnson, a professor of Natural Resources and Environmental Science at the University of Nevada, Reno; and Steven Lindberg of the Oak Ridge National Laboratory.

Bob Conrad | EurekAlert!
Further information:
http://www.unr.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>