Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yo-yo diet redistributes toxins in body tissue; Olestra+caloric cut boosts toxic excretion

20.12.2004


Perhaps Ukrainian Viktor Yushchenko should try olestra to get rid of dioxin. It’s worked before. A new study shows how diet affects chlorinated hydrocarbons trapped in body fat and how olestra raises their excretion rate up to 30-fold.



Perhaps Ukrainian opposition leader Viktor Yushchenko should try an "Olestra diet" to rid his body of dioxin. It wouldn’t be the first time that the "fake fat" product was used as an emergency agent to flush out dioxin, one of a group of chlorinated hydrocarbons that are toxic, lipophilic (attracted to fat) – and persistent in the environment and animal tissues. About five years ago, two Austrian women suffering from dioxin poisoning were given olestra snacks, which resulted in removal of dioxin at 10 times the normal rate, according to some reports.

In an as-yet-unpublished study, researchers at the University of Cincinnati School of Medicine, along with Trevor Redgrave at the University of Western Australia, treated a patient with PCB toxicity over a two-year period with olestra in the form of fat-free Pringles. The patient’s chloracne disappeared and the PCB level in fat tissue dropped dramatically.


The same University of Cincinnati School of Medicine team is reporting new research that sheds light into how diet affects retention and re-distribution through the weight gain-loss-regain cycle of chlorinated hydrocarbons, which include DDT, PCBs and dioxins. They also looked at the effects of the additive olestra, which is made by Procter & Gamble, on this redistribution and perhaps more importantly, on excretion of toxins from the body.

Indeed, "combined dietary olestra and caloric restriction caused a 30-fold increase in the rate of excretion" of a test toxin, while the toxin’s distribution "into the brain resulting from the restricted diet was reduced by 50% by dietary olestra," the study found.

The study, "Effects of yo-yo diet, caloric restriction, and olestra on tissue distribution of hexachlorobenzene," was conducted by Ronald J. Jandacek, Nicole Anderson, Min Liu, Shuqin Zheng, Qing Yang and Patrick Tso of the Department of Pathology and Laboratory Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio. The research appears in the online edition of the American Journal of Physiology-Gastrointestinal and Liver Physiology, published by the American Physiological Society.

They’re everywhere, and with long half-lives

Toxic lipophilic substances like PCBs and dioxins are so widespread globally, and are known to ascend the food chain, that virtually "all people tested have measurable levels of some of these compounds," the Jandacek et al. report notes. Because the compounds and many of their metabolites are lipophilic (attracted to fat) they are stored in adipose (fat) tissue where they remain stable, usually without adverse affect in moderate amounts for their long half-lives.

Jandacek and his colleagues designed a multi-branch, multi-endpoint study that showed with weight loss (with and without olestra) toxins redistribute around the body, but with differing affinity to various organs.

Method and results: brain, adipose and liver tissue differences

The Cincinnati researchers used 14C-hexachlorobenzene (14C-HCB), a radioactively-marked toxin that is only partly metabolized by mice, to measure how its distribution changed in various organs during the weight gain-loss yo-yo process.

They found that continued "weight loss resulted in a three-fold increase of 14C amount and concentration in the brain. After weight regain, 14C in the brain decreased but then increased again after a second weight loss." In adipose tissue, weight loss resulted in an increase in the concentration of 14C without changing the total amount in the fat tissue. "Weight loss and regain resulted in an increase of 14C in the liver that reflected an increase of fat in the liver," Jandacek et al. reported.

At this point, the regimen of weight gain and loss was repeated in mice gavaged (direct-fed to the stomach) with 14C-HCB, with one group receiving the "non-absorbable fat, olestra" in their diet. The results were striking: "Combined dietary olestra and caloric restriction caused a 30-fold increase in the rate of excretion of 14C, relative to an ad lib diet or a reduced caloric (diet) alone. The distribution of 14C into the brain resulting from the restricted diet was reduced by 50% by dietary olestra," Jandacek et al. reported.

Next steps

The results of the current study have indicated several avenues to pursue, among them being:

  • Plasma HCB increased with prolonged caloric restriction, indicating the need for future studies into the possible role of carriers of HCB.
  • HCB was cleared more rapidly from chylomicrons than triacylglycerol, "suggesting an affinity of organochlorines for the fatty acids generated during fat metabolism."
  • "How plasma carriers facilitate HCB entry into the brain is an interesting question with potential physiological implications."
  • Jandacek’s laboratory is currently studying the relationship of fasting and refeeding to liver lipid deposition.
  • The exact role of olestra and its mechanism of action in the excretion process.
  • Whether and how different organochlorine compounds (PCBs, dioxins, etc.) undergo redistribution in yo-yo diet situations.
  • Testing a lipase inhibitor such as orlistat (Xenical, Roche) "will also result in partial blockage of the enterohepatic circulation of lipophiles by providing an undigested intestinal triacylglycerol phase that will solubilize these compounds."

Source and funding

The study, "Effects of yo-yo diet, caloric restriction, and Olestra on tissue distribution of hexachlorobenzene," by Jandacek et al. appears online in the American Journal of Physiology-Gastrointestinal and Liver Physiology, published by the American Physiological Society.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>