Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yo-yo diet redistributes toxins in body tissue; Olestra+caloric cut boosts toxic excretion

20.12.2004


Perhaps Ukrainian Viktor Yushchenko should try olestra to get rid of dioxin. It’s worked before. A new study shows how diet affects chlorinated hydrocarbons trapped in body fat and how olestra raises their excretion rate up to 30-fold.



Perhaps Ukrainian opposition leader Viktor Yushchenko should try an "Olestra diet" to rid his body of dioxin. It wouldn’t be the first time that the "fake fat" product was used as an emergency agent to flush out dioxin, one of a group of chlorinated hydrocarbons that are toxic, lipophilic (attracted to fat) – and persistent in the environment and animal tissues. About five years ago, two Austrian women suffering from dioxin poisoning were given olestra snacks, which resulted in removal of dioxin at 10 times the normal rate, according to some reports.

In an as-yet-unpublished study, researchers at the University of Cincinnati School of Medicine, along with Trevor Redgrave at the University of Western Australia, treated a patient with PCB toxicity over a two-year period with olestra in the form of fat-free Pringles. The patient’s chloracne disappeared and the PCB level in fat tissue dropped dramatically.


The same University of Cincinnati School of Medicine team is reporting new research that sheds light into how diet affects retention and re-distribution through the weight gain-loss-regain cycle of chlorinated hydrocarbons, which include DDT, PCBs and dioxins. They also looked at the effects of the additive olestra, which is made by Procter & Gamble, on this redistribution and perhaps more importantly, on excretion of toxins from the body.

Indeed, "combined dietary olestra and caloric restriction caused a 30-fold increase in the rate of excretion" of a test toxin, while the toxin’s distribution "into the brain resulting from the restricted diet was reduced by 50% by dietary olestra," the study found.

The study, "Effects of yo-yo diet, caloric restriction, and olestra on tissue distribution of hexachlorobenzene," was conducted by Ronald J. Jandacek, Nicole Anderson, Min Liu, Shuqin Zheng, Qing Yang and Patrick Tso of the Department of Pathology and Laboratory Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio. The research appears in the online edition of the American Journal of Physiology-Gastrointestinal and Liver Physiology, published by the American Physiological Society.

They’re everywhere, and with long half-lives

Toxic lipophilic substances like PCBs and dioxins are so widespread globally, and are known to ascend the food chain, that virtually "all people tested have measurable levels of some of these compounds," the Jandacek et al. report notes. Because the compounds and many of their metabolites are lipophilic (attracted to fat) they are stored in adipose (fat) tissue where they remain stable, usually without adverse affect in moderate amounts for their long half-lives.

Jandacek and his colleagues designed a multi-branch, multi-endpoint study that showed with weight loss (with and without olestra) toxins redistribute around the body, but with differing affinity to various organs.

Method and results: brain, adipose and liver tissue differences

The Cincinnati researchers used 14C-hexachlorobenzene (14C-HCB), a radioactively-marked toxin that is only partly metabolized by mice, to measure how its distribution changed in various organs during the weight gain-loss yo-yo process.

They found that continued "weight loss resulted in a three-fold increase of 14C amount and concentration in the brain. After weight regain, 14C in the brain decreased but then increased again after a second weight loss." In adipose tissue, weight loss resulted in an increase in the concentration of 14C without changing the total amount in the fat tissue. "Weight loss and regain resulted in an increase of 14C in the liver that reflected an increase of fat in the liver," Jandacek et al. reported.

At this point, the regimen of weight gain and loss was repeated in mice gavaged (direct-fed to the stomach) with 14C-HCB, with one group receiving the "non-absorbable fat, olestra" in their diet. The results were striking: "Combined dietary olestra and caloric restriction caused a 30-fold increase in the rate of excretion of 14C, relative to an ad lib diet or a reduced caloric (diet) alone. The distribution of 14C into the brain resulting from the restricted diet was reduced by 50% by dietary olestra," Jandacek et al. reported.

Next steps

The results of the current study have indicated several avenues to pursue, among them being:

  • Plasma HCB increased with prolonged caloric restriction, indicating the need for future studies into the possible role of carriers of HCB.
  • HCB was cleared more rapidly from chylomicrons than triacylglycerol, "suggesting an affinity of organochlorines for the fatty acids generated during fat metabolism."
  • "How plasma carriers facilitate HCB entry into the brain is an interesting question with potential physiological implications."
  • Jandacek’s laboratory is currently studying the relationship of fasting and refeeding to liver lipid deposition.
  • The exact role of olestra and its mechanism of action in the excretion process.
  • Whether and how different organochlorine compounds (PCBs, dioxins, etc.) undergo redistribution in yo-yo diet situations.
  • Testing a lipase inhibitor such as orlistat (Xenical, Roche) "will also result in partial blockage of the enterohepatic circulation of lipophiles by providing an undigested intestinal triacylglycerol phase that will solubilize these compounds."

Source and funding

The study, "Effects of yo-yo diet, caloric restriction, and Olestra on tissue distribution of hexachlorobenzene," by Jandacek et al. appears online in the American Journal of Physiology-Gastrointestinal and Liver Physiology, published by the American Physiological Society.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>