Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nevada seismology researchers develop model that estimates impact of large earthquake in Los Angeles

20.12.2004


Stiffer building codes in the Los Angeles basin may come in the near future as a result of a new study completed by University of Nevada, Reno seismologists of an anticipated large thrust-fault earthquake.



"Our study in California’s Kern County is a good indicator of what could happen in Los Angeles because the geology of the areas is so similar," said James Brune, seismology pioneer and University Foundation Professor. The conditions, he said, would indicate "high motion" in Los Angeles.

His team’s study in Kern County is a scenario for a large earthquake in the Los Angeles basin because the downtown portion of the city is on the hanging-wall of the Puente Hills thrust fault. The study involved looking at what levels of peak ground acceleration were necessary to topple a balanced rock or a rigid transformer. Their conclusions reinforce that the hanging-wall side of large thrust-fault earthquakes experience more extreme motion and, therefore, more damage than the footwall side.


A thrust-fault earthquake occurs when the land on one side of a fault (the "hanging-wall") gets driven up and over land on the other side (the "foot-wall"), he explained. This is different from a normal fault earthquake where land on one side of the fault gets pulled down and away from the land on the other side.

Brune and his team of University professors, Abdolrasool Anooshehpoor, Baoping Shi and Yuehua Zeng, have further proved that the geometry of thrust faults can dictate the range of an earthquake’s damage in their study, "Precarious Rock and Overturned Transformer Evidence for Ground Shaking in the Ms=7.7 Kern County Earthquake: an Analog for Disastrous Shaking from a Major Thrust Fault in the Los Angeles Basin." This article will soon be published in the Bulletin of the Seismological Society of America. "This is the first extensive data set from a major thrust-fault earthquake in the United States," said Anooshehpoor. "The only other data on these faults come from a 1999 quake in Taiwan."

Brune and his team have supplemented data from Taiwan with recent research which shows that precariously balanced rocks and overturned transformers in the vicinity of the White Wolf fault, south of Bakersfield, Calif., provide an understanding of thrust-fault earthquake ground motion that has been otherwise unavailable. The team also complemented their rock research by studying large foam-rubber models of faults and computer simulations of quakes.

According to Brune, precariously balanced rocks evolve naturally unless shaken down by earthquakes. As a result, these rocks are effective earthquake seismoscopes. Zones of precarious rocks are direct evidence that no strong ground accelerations have occurred for thousands of years, and as a result they potentially provide important information about seismic risk. "The brilliance of this balanced-rock research is that it gives us a way to test ground-motion probability which can dictate building codes," said John Anderson, University professor of geophysics and director of the Nevada Seismological Laboratory.

The next United States Geological Survey hazard methodologies which are based on ground-motion probability are slated for release in 2007. These methodologies are used by engineers to frame building codes. Many anticipate that Brune’s study will be used to update these codes because the research provides new quantitative constraints on seismic hazard.

Katie Hall | EurekAlert!
Further information:
http://www.unr.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>