Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nevada seismology researchers develop model that estimates impact of large earthquake in Los Angeles

20.12.2004


Stiffer building codes in the Los Angeles basin may come in the near future as a result of a new study completed by University of Nevada, Reno seismologists of an anticipated large thrust-fault earthquake.



"Our study in California’s Kern County is a good indicator of what could happen in Los Angeles because the geology of the areas is so similar," said James Brune, seismology pioneer and University Foundation Professor. The conditions, he said, would indicate "high motion" in Los Angeles.

His team’s study in Kern County is a scenario for a large earthquake in the Los Angeles basin because the downtown portion of the city is on the hanging-wall of the Puente Hills thrust fault. The study involved looking at what levels of peak ground acceleration were necessary to topple a balanced rock or a rigid transformer. Their conclusions reinforce that the hanging-wall side of large thrust-fault earthquakes experience more extreme motion and, therefore, more damage than the footwall side.


A thrust-fault earthquake occurs when the land on one side of a fault (the "hanging-wall") gets driven up and over land on the other side (the "foot-wall"), he explained. This is different from a normal fault earthquake where land on one side of the fault gets pulled down and away from the land on the other side.

Brune and his team of University professors, Abdolrasool Anooshehpoor, Baoping Shi and Yuehua Zeng, have further proved that the geometry of thrust faults can dictate the range of an earthquake’s damage in their study, "Precarious Rock and Overturned Transformer Evidence for Ground Shaking in the Ms=7.7 Kern County Earthquake: an Analog for Disastrous Shaking from a Major Thrust Fault in the Los Angeles Basin." This article will soon be published in the Bulletin of the Seismological Society of America. "This is the first extensive data set from a major thrust-fault earthquake in the United States," said Anooshehpoor. "The only other data on these faults come from a 1999 quake in Taiwan."

Brune and his team have supplemented data from Taiwan with recent research which shows that precariously balanced rocks and overturned transformers in the vicinity of the White Wolf fault, south of Bakersfield, Calif., provide an understanding of thrust-fault earthquake ground motion that has been otherwise unavailable. The team also complemented their rock research by studying large foam-rubber models of faults and computer simulations of quakes.

According to Brune, precariously balanced rocks evolve naturally unless shaken down by earthquakes. As a result, these rocks are effective earthquake seismoscopes. Zones of precarious rocks are direct evidence that no strong ground accelerations have occurred for thousands of years, and as a result they potentially provide important information about seismic risk. "The brilliance of this balanced-rock research is that it gives us a way to test ground-motion probability which can dictate building codes," said John Anderson, University professor of geophysics and director of the Nevada Seismological Laboratory.

The next United States Geological Survey hazard methodologies which are based on ground-motion probability are slated for release in 2007. These methodologies are used by engineers to frame building codes. Many anticipate that Brune’s study will be used to update these codes because the research provides new quantitative constraints on seismic hazard.

Katie Hall | EurekAlert!
Further information:
http://www.unr.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>