Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study resolves doubt about origin of Earth’s oldest rocks, possibility of finding traces of life

20.12.2004


Experiments led by Nicolas Dauphas of the University of Chicago and Chicago’s Field Museum have validated some controversial rocks from Greenland as the potential site for the earliest evidence of life on Earth.



"The samples that I have studied are extremely controversial," said Dauphas, an Assistant Professor in Geophysical Sciences at the University of Chicago and a Field Museum Associate. Some scientists have claimed that these rocks from Greenland’s banded iron formations contain traces of life that push back the biological record of life on earth to 3.85 billion years ago. Others, however, dismiss the claim. They argue that the rocks originally existed in a molten state, a condition unsuitable for the preservation of evidence for life.

"My results show unambiguously that the rocks are sediment deposited at the bottom of an ocean," Dauphas said. "This is an important result. It puts the search for life on the early Earth on firm foundations."


Dauphas will announce his findings in the Dec. 17 issue of the journal Science. His co-authors are Meenakshi Wadhwa and Philip Janney of Chicago’s Field Museum, Andrew Davis of the University of Chicago, and Mark van Zuilen and Bernard Marty of France’s Centre de Recherches Petrographiques et Geochimiques.

The oldest-known microfossils, which come from Australia and are themselves disputed, are more than 3.4 billion years old. Scientists have now turned their attention to Greenland for evidence of even older biological activity.

The controversy over the Greenland rocks stemmed from changes they underwent over the long history of the Earth. "During burial they were cooked under high pressure and temperature, which completely modified the chemistry and mineralogy of the rocks," Dauphas said. Consequently, scientists found it difficult to determine whether the rocks were igneous (those that had cooled from a once-molten state) or sedimentary (eroded and deposited by wind or water). Only sedimentary rocks would be able to preserve evidence of life.

That question was finally answered by a state-of-the-art mass spectrometer in Wadhwa’s laboratory at the Field Museum. The spectrometer was among the resources that led Science co-authors Davis, Dauphas, Wadhwa and others earlier this year to form the Chicago Center for Cosmochemistry.

The center is a collaboration between the University of Chicago, the Field Museum and Argonne National Laboratory to study the elements and their many atomic variations in meteorites and other materials from Earth and space. Dauphas used the spectrometer to measure with high precision the subtle atomic variations in the composition of iron, called isotopes, preserved in rocks on the southwest coast of Greenland and Akilia Island. The variations in these isotopes told them what type of process formed the rock, Wadhwa said. "From the standpoint of these isotopes, there’s very convincing evidence that these rocks cannot be of igneous origin," she said.

Unlike igneous rocks, the Greenland samples contained a considerable range of isotopic variation in iron isotopics, said Davis, Director of the Chicago Center for Cosmochemistry and Senior Scientist at the University of Chicago’s Enrico Fermi Institute. "All igneous rocks on the Earth have pretty much the same iron isotopic composition, so it was really a pretty simple test."

The question that remains is whether the Greenland rocks actually contain evidence for early life. Circumstantial evidence suggests that they do. These ancient rocks have been oxidized, meaning that they have chemically reacted with oxygen. But the atmosphere of the early Earth contained much less oxygen than it does today. Where did the oxygen come from?

Photosynthesis, a chemical process signaling the presence of bacteria, might be the answer. It’s a question that Dauphas intends to pursue in his new Origins Lab at the University of Chicago. "We can’t claim at this stage that there is unequivocal evidence for biological activity four billion years ago," Davis said. "There are more experiments that need to be done."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>