Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study resolves doubt about origin of Earth’s oldest rocks, possibility of finding traces of life

20.12.2004


Experiments led by Nicolas Dauphas of the University of Chicago and Chicago’s Field Museum have validated some controversial rocks from Greenland as the potential site for the earliest evidence of life on Earth.



"The samples that I have studied are extremely controversial," said Dauphas, an Assistant Professor in Geophysical Sciences at the University of Chicago and a Field Museum Associate. Some scientists have claimed that these rocks from Greenland’s banded iron formations contain traces of life that push back the biological record of life on earth to 3.85 billion years ago. Others, however, dismiss the claim. They argue that the rocks originally existed in a molten state, a condition unsuitable for the preservation of evidence for life.

"My results show unambiguously that the rocks are sediment deposited at the bottom of an ocean," Dauphas said. "This is an important result. It puts the search for life on the early Earth on firm foundations."


Dauphas will announce his findings in the Dec. 17 issue of the journal Science. His co-authors are Meenakshi Wadhwa and Philip Janney of Chicago’s Field Museum, Andrew Davis of the University of Chicago, and Mark van Zuilen and Bernard Marty of France’s Centre de Recherches Petrographiques et Geochimiques.

The oldest-known microfossils, which come from Australia and are themselves disputed, are more than 3.4 billion years old. Scientists have now turned their attention to Greenland for evidence of even older biological activity.

The controversy over the Greenland rocks stemmed from changes they underwent over the long history of the Earth. "During burial they were cooked under high pressure and temperature, which completely modified the chemistry and mineralogy of the rocks," Dauphas said. Consequently, scientists found it difficult to determine whether the rocks were igneous (those that had cooled from a once-molten state) or sedimentary (eroded and deposited by wind or water). Only sedimentary rocks would be able to preserve evidence of life.

That question was finally answered by a state-of-the-art mass spectrometer in Wadhwa’s laboratory at the Field Museum. The spectrometer was among the resources that led Science co-authors Davis, Dauphas, Wadhwa and others earlier this year to form the Chicago Center for Cosmochemistry.

The center is a collaboration between the University of Chicago, the Field Museum and Argonne National Laboratory to study the elements and their many atomic variations in meteorites and other materials from Earth and space. Dauphas used the spectrometer to measure with high precision the subtle atomic variations in the composition of iron, called isotopes, preserved in rocks on the southwest coast of Greenland and Akilia Island. The variations in these isotopes told them what type of process formed the rock, Wadhwa said. "From the standpoint of these isotopes, there’s very convincing evidence that these rocks cannot be of igneous origin," she said.

Unlike igneous rocks, the Greenland samples contained a considerable range of isotopic variation in iron isotopics, said Davis, Director of the Chicago Center for Cosmochemistry and Senior Scientist at the University of Chicago’s Enrico Fermi Institute. "All igneous rocks on the Earth have pretty much the same iron isotopic composition, so it was really a pretty simple test."

The question that remains is whether the Greenland rocks actually contain evidence for early life. Circumstantial evidence suggests that they do. These ancient rocks have been oxidized, meaning that they have chemically reacted with oxygen. But the atmosphere of the early Earth contained much less oxygen than it does today. Where did the oxygen come from?

Photosynthesis, a chemical process signaling the presence of bacteria, might be the answer. It’s a question that Dauphas intends to pursue in his new Origins Lab at the University of Chicago. "We can’t claim at this stage that there is unequivocal evidence for biological activity four billion years ago," Davis said. "There are more experiments that need to be done."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>