Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stanford study finds new method improves chemotherapy survival in mice


Seeking to find a way to lessen patients’ vulnerability to deadly infections following chemotherapy, researchers at the Stanford University School of Medicine have figured out a way to boost the immune function in animals following such treatments. Their approach involves increasing the pool of cells that give rise to neutrophils, a type of white blood cell that is critical for fighting bacterial and fungal infections but is particularly ravaged by chemotherapy.

"Our approach hadn’t been studied before, which is interesting because it’s a very straightforward concept," said study leader Janice "Wes" Brown, MD, assistant professor of medicine in the divisions of bone marrow transplantation and infectious diseases.

The team reported that an infusion of a type of bone marrow cell from a donor mouse yielded significantly more neutrophils in the laboratory mice a week after a dose of a typical chemotherapeutic agent. The procedure also increased the animals’ ability to fight a deadly fungal infection. The team’s findings appear in the Dec. 15 issue of the journal Blood.

The condition in which neutrophils are lacking is known as neutropenia. It is the leading cause of death among cancer patients that is not related to their tumor. Because of the seriousness of the condition, doctors will reduce chemotherapy doses if they notice an infection developing in the early phases of the disease, which can decrease the efficacy of the cancer treatment. Additionally, resulting fevers and infections during neutropenia must be fought with antibiotics and antifungals, which can be toxic and spur resistance.

"Clinicians see neutropenia all the time and follow the usual protocols of antibiotics and antifungals," said Brown, who is the sole infectious disease consultant for the bone marrow transplantation division. "We thought, ’Why are we just waiting for the neutropenia to resolve or for the patient to develop an infection? Why don’t we try to prevent it?’"

Brown’s group sought to circumvent the problem by adding more of one type of cell-the myeloid progenitor. This cell can follow several routes of development. They can turn into red blood cells, platelets or neutrophils. Using the progenitor cells seems to be more effective than using mature neutrophils, the researchers said.

The researchers gave a single dose of the chemotherapeutic agent 5-fluorouracil to mice, and the next day gave some of the mice an infusion of purified myeloid progenitor cells. They then exposed all of the mice to a fungus that had killed a chemotherapy patient.

One week later, researchers found that the mice treated with the cellular boost had significantly more neutrophils in their spleens, blood and bone marrow than the ones that had not received the infusion. More than half of the treated mice survived, while only a third of the ones without it did.

The study follows on the heels of earlier work by Brown and her team on the effectiveness of this strategy following radiation treatment. That earlier research also showed that the use of myeloid progenitors improved the ability of the mice to survive exposure to a fungus as well as a bacterial infection.

Brown’s group is now looking at combining cellular infusion with clinical strategies of using antifungals or growth factors to stimulate increases in neutrophil numbers. So far in animal studies, she said, it looks like the therapies merge well and will add together for more effective protection.

Brown noted that the use of the myeloid progenitor cells may be preferential to using mature neutrophils for at least two reasons. First, the myeloid progenitors give rise to a broader spectrum of cells, including platelets and red blood cells, which is helpful in restoring normal blood functions. And second, the myeloid progenitors can survive freezing and thus can be more readily available for treatment. By contrast, the mature cells must be infused immediately into a patient following the collection period, which typically takes four hours per session.

"And the good thing is that we have readily isolated these cells from blood samples from donors and patients," Brown said, "so collection of these cells for clinical use doesn’t require the development of new technology."

Mitzi Baker | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>