Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford study finds new method improves chemotherapy survival in mice

16.12.2004


Seeking to find a way to lessen patients’ vulnerability to deadly infections following chemotherapy, researchers at the Stanford University School of Medicine have figured out a way to boost the immune function in animals following such treatments. Their approach involves increasing the pool of cells that give rise to neutrophils, a type of white blood cell that is critical for fighting bacterial and fungal infections but is particularly ravaged by chemotherapy.

"Our approach hadn’t been studied before, which is interesting because it’s a very straightforward concept," said study leader Janice "Wes" Brown, MD, assistant professor of medicine in the divisions of bone marrow transplantation and infectious diseases.

The team reported that an infusion of a type of bone marrow cell from a donor mouse yielded significantly more neutrophils in the laboratory mice a week after a dose of a typical chemotherapeutic agent. The procedure also increased the animals’ ability to fight a deadly fungal infection. The team’s findings appear in the Dec. 15 issue of the journal Blood.



The condition in which neutrophils are lacking is known as neutropenia. It is the leading cause of death among cancer patients that is not related to their tumor. Because of the seriousness of the condition, doctors will reduce chemotherapy doses if they notice an infection developing in the early phases of the disease, which can decrease the efficacy of the cancer treatment. Additionally, resulting fevers and infections during neutropenia must be fought with antibiotics and antifungals, which can be toxic and spur resistance.

"Clinicians see neutropenia all the time and follow the usual protocols of antibiotics and antifungals," said Brown, who is the sole infectious disease consultant for the bone marrow transplantation division. "We thought, ’Why are we just waiting for the neutropenia to resolve or for the patient to develop an infection? Why don’t we try to prevent it?’"

Brown’s group sought to circumvent the problem by adding more of one type of cell-the myeloid progenitor. This cell can follow several routes of development. They can turn into red blood cells, platelets or neutrophils. Using the progenitor cells seems to be more effective than using mature neutrophils, the researchers said.

The researchers gave a single dose of the chemotherapeutic agent 5-fluorouracil to mice, and the next day gave some of the mice an infusion of purified myeloid progenitor cells. They then exposed all of the mice to a fungus that had killed a chemotherapy patient.

One week later, researchers found that the mice treated with the cellular boost had significantly more neutrophils in their spleens, blood and bone marrow than the ones that had not received the infusion. More than half of the treated mice survived, while only a third of the ones without it did.

The study follows on the heels of earlier work by Brown and her team on the effectiveness of this strategy following radiation treatment. That earlier research also showed that the use of myeloid progenitors improved the ability of the mice to survive exposure to a fungus as well as a bacterial infection.

Brown’s group is now looking at combining cellular infusion with clinical strategies of using antifungals or growth factors to stimulate increases in neutrophil numbers. So far in animal studies, she said, it looks like the therapies merge well and will add together for more effective protection.

Brown noted that the use of the myeloid progenitor cells may be preferential to using mature neutrophils for at least two reasons. First, the myeloid progenitors give rise to a broader spectrum of cells, including platelets and red blood cells, which is helpful in restoring normal blood functions. And second, the myeloid progenitors can survive freezing and thus can be more readily available for treatment. By contrast, the mature cells must be infused immediately into a patient following the collection period, which typically takes four hours per session.

"And the good thing is that we have readily isolated these cells from blood samples from donors and patients," Brown said, "so collection of these cells for clinical use doesn’t require the development of new technology."

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>