Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study shows how mad cow prions hitch a ride into intestine


They piggyback on iron-storing proteins after surviving digestive juices

A new study from the Department of Pathology at Case Western Reserve University School of Medicine shows that the infectious version of prion proteins, the main culprits behind the human form of mad cow disease or variant Creutzfeldt-Jakob Disease (vCJD), are not destroyed by digestive enzymes found in the stomach. Furthermore, the study finds that the infectious prion proteins, also known as prions, cross the normally stringent intestinal barrier by riding piggyback on ferritin, a protein normally absorbed by the intestine and abundantly present in a typical meat dish. The study appears in the Dec. 15 issue of the Journal of Neuroscience.

Prions are a modified form of normal proteins, the prion proteins, which become infectious and accumulate in the nervous system causing fatal neurodegenerative disease. Variant CJD results from eating contaminated beef products from cattle infected with mad cow disease. To date, 155 cases of confirmed and probable vCJD in the world have been reported, and it is unclear how many others are carrying the infection.

According to the study’s senior author Neena Singh, M.D., Ph.D., associate professor of pathology, little is known about the mechanism by which prions cross the human intestinal barrier, which can be a particularly difficult obstacle to cross. "The mad cow epidemic is far from over, and the continuous spread of a similar prion disease in the deer and elk population in the U.S. raises serious public health concerns," said Singh. "It is therefore essential to understand how this disease is transmitted from one species to another, especially in the case of humans where the infectious prions survive through stages of cooking and digestion."

Using brain tissues infected with the spontaneously occurring version of CJD which is also caused by prions, the researchers simulated the human digestive process by subjecting the tissue to sequential treatment with digestive fluids as found in the human intestinal tract. They then studied how the surviving prions are absorbed by the intestine using a cell model. The prions were linked with ferritin, a cellular protein that normally binds excess cellular iron to store it in a soluble, non-toxic form within the cell. "Since ferritin shares considerable similarity between species, it may facilitate the uptake of prions from distant species by the human intestine,"said Singh."This important finding provides insight into the cellular mechanisms by which infectious prions ingested with contaminated food cross the species barrier, and provides the possibility of devising practical methods for blocking its uptake," she said. "If we can develop a method of blocking the binding of prions to ferritin, we may be able to prevent animals from getting this disease through feed, and stop the transmission to humans."

Currently, Singh’s group is checking whether prions from distant species such as deer and elk can cross the human intestinal barrier.

George Stamatis | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>