Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests Akt3 protein is key to melanoma’s resistance to chemotherapy

14.12.2004


Wiping out a protein in skin cancer cells could significantly stall melanoma tumor development and increase the sensitivity of the cancer cells to chemotherapy, a Penn State College of Medicine study suggests.



The protein, Akt3, appears to be responsible for promoting tumor cell survival and development in 43 percent to 60 percent of non-inherited melanomas. "Our study showed that lowering Akt3 activity can reduce the tumor-creating potential of melanoma cells by making the cancer cells more likely to respond to signals that tell them to die," said Gavin P. Robertson, Ph.D., assistant professor of pharmacology, pathology and dermatology, Penn State College of Medicine. "Because most chemotherapeutic drugs work by inducing apoptosis, or programmed cell death, we predict that inhibiting Akt3 activity could lower the threshold doses of drugs or radiation required for effective chemo- or radiotherapy and provide a mechanism to directly target the melanoma cells."

The study, published recently in the journal Cancer Research, used melanoma cell lines together with tumors taken directly from melanoma patients to show that as melanoma cells become more aggressive and metastatic, the amount of active Akt3 protein in the cells increases.


In non-cancerous cells, another protein called PTEN – phosphatase and tensin homologue – starts a chain reaction ensuring that malfunctioning and damaged cells are killed. But abnormal cancerous cells gain the ability to switch off PTEN, allowing dysfunctional, cancerous cells to survive and thrive.

This study exposes another link in that chain reaction by connecting PTEN to Akt3 in melanomas. Robertson found that PTEN specifically regulates Akt3. Consequently, when PTEN is lost, Akt3 malfunctions and accumulates, allowing melanoma cells to survive. "In addition to the connection to PTEN, we also found that more copies of the Akt3 gene are present as melanoma cells become more aggressive," Robertson said. "The Akt3, in effect, protects the cancer cells from the normal signals that would tell them to die. Using samples of human melanoma tumors, we found that levels of active Akt3 increase progressively during melanoma tumor progression with highest levels present in advanced-stage melanoma."

Akt3 is one of a trio of Akt proteins, all three of which have been implicated in various cancers. For example, Akt2 activity has been found in cancers of the ovary, pancreas, stomach and breast. Although all three forms of Akt are present in melanoma cells, this study found that in melanoma, Akt1 and Akt2 remain inactive and, therefore, have little if any role in melanoma development.

Robertson used siRNA, small interfering ribonucleic acids, which can be made to reduce the amount of a specific protein produced by a cell disrupting the synthesis of the protein. In Robertson’s study, the siRNA were designed specifically to target Akt3. In addition, he put back the PTEN protein in the melanoma cells. This restarted the normal signals triggering cell death that had been halted by the melanoma cells. Both of these methods reduced melanoma cell survival and inhibited tumor development. Robertson’s team confirmed this using a mouse model, finding that decreasing Akt3 activity using siRNA or reintroducing the missing PTEN protein halted tumor progression.

"Identifying Akt3 as a possible target to halt the growth of and kill melanoma cells provides new opportunities to develop therapies for patients with metastatic melanoma," Robertson said. "Ultimately, therapies targeted against Akt3 could be used with traditional chemotherapy to give those with melanoma more effective therapeutic options to fight the disease."

This research was supported by the American Cancer Society and The Foreman Foundation for Melanoma Research.

In addition to Robertson, the study team included: Jill M. Stahl, Arati Sharma, Mitchell Cheung, Melissa Zimmerman, Mark Kester, and Lakshman Sandirasegarane, Penn State College of Medicine, Jin Q. Cheng, University of South Florida College of Medicine, and Marcus W. Bosenberg, The University of Vermont.

Valerie Gliem | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>