Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain can be trained to process sound in alternate way

13.12.2004


UCSF scientists have found that the brains of rats can be trained to learn an alternate way of processing changes in the loudness of sound. The discovery, they say, has potential for the treatment of hearing loss, autism, and other sensory disabilities in humans. It also gives clues, they say, about the process of learning and the way we perceive the world.



"We addressed a very fundamental question," says Daniel B. Polley, PhD, lead author of the study. "When we notice a sound getting louder, what happens in our brain so that we know it’s getting louder?"

Polley is a postdoctoral research fellow in the laboratory of senior author Michael M. Merzenich, PhD, co-director of the Coleman Memorial Laboratory in the UCSF Keck Center for Integrative Neuroscience and UCSF professor of otolaryngology.


The study was published recently in Proceedings of the National Academy of Sciences (November 16, 2004).

"This is a very old idea," Polley notes. "How to relate the bigness of a stimulus to the bigness of its internal representation in the brain." Over the centuries, philosophers and scientists have put together a picture of how our brains model the world through the mechanism of our senses. Physical stimuli such as light, sound, and touch are converted by our sensory organs -- eyes, ears, and skin -- into electrical signals, which are processed by neurons in different areas of the brain. As those neurons fire, we see, hear, and feel. When the light or sound changes in intensity, our neurons fire faster or slower in direct ratio to the change. That ratio varies depending on the sense involved, but is constant for each sense: the louder a sound, the faster the neurons in the auditory cortex fire.

But now that picture has changed. Polley trained two groups of rats to become " experts" at discriminating between very small differences in loudness -- an ability that untrained rats do not have. He then looked at how the expert rats processed changes in loudness compared to two groups of untrained rats, and found that the auditory cortex in the expert rats contained groups of neurons that had become selective for specific volume levels -- they fired only at those levels and were quiet otherwise. This physiological change in the brain, called "plasticity," has been widely observed in humans and animals who have learned new skills.

Then came the breakthrough discovery: the expert rats were processing volume changes in a new and different way. In the brains of the untrained rats, the overall neural response rate increased as the sound got louder and louder, as the classical model would predict. In the expert rats, however, the overall response rate of the selective neurons increased until the sound reached a loudness threshold of 40 decibels -- and then leveled off while the loudness increased 100-fold, from 40 to 80 decibels. "At first glance, this was not good," observes Polley: If their neurons were not increasing their firing rate, how were the expert rats registering the increase in volume? David T. Blake, PhD, UCSF assistant research physiologist and a co-author of the study, cracked the puzzle. Instead of looking for a simple increase in firing rate, Blake measured the rate at which the firing changed, either up or down. This rate turned out to be in exact proportion to the increase in volume -- and at the same ratio as the firing rate increase. Tests confirmed that the untrained rats’ brains were not registering volume increases in this new way; it had been learned by the expert rats as they became better at discriminating changes in volume.

Polley concludes, "There is still proportionality between response strength in the brain and the stimulus. But now neurons are much more selective, and can represent sound intensity with decreasing firing rates as well as increasing firing rates." This system is "optimal" for representing subtle changes in loudness, reasons Polley, because "it gives you two directions to change through," making it many times more responsive than a simple firing rate increase. "And it becomes optimized through learning."

The discovery has several implications. From a practical viewpoint, "I think it has quite a bit to offer," says Christoph E. Schreiner, UCSF professor of otolaryngology and a co-author of the study. In particular, it might present a technique for retraining people with partial hearing loss, who often cannot hear very soft sounds but have normal hearing at higher volume levels.

"There’s a very steep volume curve that goes from soft to very loud right away, and people have a hard time with that," Schreiner explains, "especially for hearing-aid users." However, they -- or their auditory cortexes -- might be trained to be more sensitive to minor volume changes at the lower threshold of hearing, "so this steep transition doesn’t bother them anymore." Similarly, such training might be of value to profoundly hearing-impaired people with cochlear implants, which replace the function of the inner ear but are not as sensitive to small volume changes.

Another group that might be helped is children with sensory-modulation disorders, including children with autism. These children are "overwhelmingly sensitive" to changes in their environment, explains Polley. "So when presented with a moderate stimulus -- a sound, a touch, a flash of light -- they respond as if their entire sensory systems have become overwhelmed. What might be needed in their brains is greater selectivity." Potentially, they could be trained to distinguish smaller degrees of change in their environments. Being perceived as gradual, these changes would be less overwhelming.

From a psychological viewpoint, the study says something about how we acquire and refine new skills. When we speak of training a musician’s ear or a painter’ s eye, speculates Polley, we may be referring to the alternate sensory processing system employed by the expert rats. "This is implicit learning," he says. "How do we learn the skills that distinguish one tradesman from another tradesman? These processes are undoubtedly operating in these types of learning behaviors, and they most likely are responsible for expertise. We are looking at the neural substrate for these lifelong learning processes."

Jennifer O’Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>