Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children’s Hospital Boston launches major genetic study of autism

13.12.2004


Genetics, genomics, bioinformatics and neuroscience join forces

Children’s Hospital Boston has begun enrolling patients as part of an ambitious new multidisciplinary study of autism that will attempt to pin down its genetic and biochemical causes. Results could be available in a year or two, and could yield a greater biological understanding of autistic spectrum disorders, better diagnostic and prognostic techniques, and potential medical treatments.

More than 90 percent of autism cases are believed to have a genetic component, and multiple genes are believed to be involved. But although much research has been done and many candidate genes identified, none have been clearly implicated. The Children’s study, partially funded by the Nancy Lurie Marks Family Foundation, will bring together researchers in genetics, genomics, bioinformatics, and developmental medicine to try to solve the puzzle.



Autism is a complex behavioral syndrome defined by developmental deficits, particularly communication deficits, impaired social interaction and repetitive behaviors. Affecting about one in 1,000 people, it is now thought of as a spectrum of disorders including autism, Asperger’s syndrome and pervasive developmental disorder. There is no specific medical treatment, although behavioral interventions help children on the autistic spectrum live fuller, more functional lives.

The Children’s researchers plan to enroll 100 to 150 children age 2 years and older per year, along with their parents and affected siblings. They also will enroll 150 unaffected children to serve as controls. The study has several components:

  • The Children’s Developmental Medicine Center will first conduct detailed behavioral evaluations of the children and their families, led by Drs. Janice Ware and Leonard Rappaport. Subjects will be assessed for autistic spectrum disorders and carefully classified according to rigorous clinical research criteria. The goal is to develop behavioral profiles that can be correlated with genetic data. Children and their parents will then give saliva samples for DNA analysis and blood samples for RNA gene expression studies.

  • Led by Drs. Ingrid Holm and Louis Kunkel, researchers in the Children’s Program in Genomics will study the DNA samples, performing association studies and linkage studies to look for genetic differences (polymorphisms) that are shared within families and may accompany clinical manifestations of autistic spectrum disorders.

  • The Program in Genomics also will perform microarray ("gene-chip") studies of RNA from white blood cells to examine differences in gene activity, or expression, among autistic children, their parents, and matched control subjects. By looking at 60,000 genes simultaneously and determining which are turned "on" and "off," the researchers will seek patterns or genetic "signatures" that mark the different autistic spectrum disorders and give clues to their biological causes. The investigators hope to show that gene expression in white blood cells is similar enough to that in brain cells to be a useful surrogate measure, avoiding the need to obtain and test brain tissue.

  • The Children’s Hospital Informatics Program (CHIP), led by Dr. Isaac Kohane, will perform computational analyses to help detect subtle genetic patterns, group patients according to their gene-expression profiles, and apply statistical techniques to determine the reliability of the patterns and linkages found and eliminate false-positive findings. As new data become available, CHIP will factor them in to create the strongest possible predictive models for autistic spectrum disorders.

  • The Neurobiology Program of Children’s Hospital, led by Dr. Michael Greenberg, will examine the connection between autism, a protein called brain-derived neurotrophic factor (BDNF), and several genes known to regulate BDNF. BDNF regulates many aspects of brain development and function, including formation of synapses. Mutation of one gene that regulates BDNF, called MeCP2, has already been linked to Rett syndrome, which is characterized by mental retardation and autistic behaviors. Further studies of MeCP2 and related genes will explore how they work and how brain-cell activity triggers them. These investigations may uncover other genes and biochemical pathways that underlie autism.

  • Children and families enrolled in the Children’s study also will be invited to take part in research at MIT’s Department of Brain and Cognitive Sciences. Study participants will be tested for their ability to recognize and respond to faces (a critical deficit in autism), the development of specific language skills (also impaired in autism), and gross and fine motor function. Although not a formal part of the study, the data collected by MIT will be fed back into the Children’s study and correlated with the genetic data.


Aaron Patnode | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>