Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children’s Hospital Boston launches major genetic study of autism

13.12.2004


Genetics, genomics, bioinformatics and neuroscience join forces

Children’s Hospital Boston has begun enrolling patients as part of an ambitious new multidisciplinary study of autism that will attempt to pin down its genetic and biochemical causes. Results could be available in a year or two, and could yield a greater biological understanding of autistic spectrum disorders, better diagnostic and prognostic techniques, and potential medical treatments.

More than 90 percent of autism cases are believed to have a genetic component, and multiple genes are believed to be involved. But although much research has been done and many candidate genes identified, none have been clearly implicated. The Children’s study, partially funded by the Nancy Lurie Marks Family Foundation, will bring together researchers in genetics, genomics, bioinformatics, and developmental medicine to try to solve the puzzle.



Autism is a complex behavioral syndrome defined by developmental deficits, particularly communication deficits, impaired social interaction and repetitive behaviors. Affecting about one in 1,000 people, it is now thought of as a spectrum of disorders including autism, Asperger’s syndrome and pervasive developmental disorder. There is no specific medical treatment, although behavioral interventions help children on the autistic spectrum live fuller, more functional lives.

The Children’s researchers plan to enroll 100 to 150 children age 2 years and older per year, along with their parents and affected siblings. They also will enroll 150 unaffected children to serve as controls. The study has several components:

  • The Children’s Developmental Medicine Center will first conduct detailed behavioral evaluations of the children and their families, led by Drs. Janice Ware and Leonard Rappaport. Subjects will be assessed for autistic spectrum disorders and carefully classified according to rigorous clinical research criteria. The goal is to develop behavioral profiles that can be correlated with genetic data. Children and their parents will then give saliva samples for DNA analysis and blood samples for RNA gene expression studies.

  • Led by Drs. Ingrid Holm and Louis Kunkel, researchers in the Children’s Program in Genomics will study the DNA samples, performing association studies and linkage studies to look for genetic differences (polymorphisms) that are shared within families and may accompany clinical manifestations of autistic spectrum disorders.

  • The Program in Genomics also will perform microarray ("gene-chip") studies of RNA from white blood cells to examine differences in gene activity, or expression, among autistic children, their parents, and matched control subjects. By looking at 60,000 genes simultaneously and determining which are turned "on" and "off," the researchers will seek patterns or genetic "signatures" that mark the different autistic spectrum disorders and give clues to their biological causes. The investigators hope to show that gene expression in white blood cells is similar enough to that in brain cells to be a useful surrogate measure, avoiding the need to obtain and test brain tissue.

  • The Children’s Hospital Informatics Program (CHIP), led by Dr. Isaac Kohane, will perform computational analyses to help detect subtle genetic patterns, group patients according to their gene-expression profiles, and apply statistical techniques to determine the reliability of the patterns and linkages found and eliminate false-positive findings. As new data become available, CHIP will factor them in to create the strongest possible predictive models for autistic spectrum disorders.

  • The Neurobiology Program of Children’s Hospital, led by Dr. Michael Greenberg, will examine the connection between autism, a protein called brain-derived neurotrophic factor (BDNF), and several genes known to regulate BDNF. BDNF regulates many aspects of brain development and function, including formation of synapses. Mutation of one gene that regulates BDNF, called MeCP2, has already been linked to Rett syndrome, which is characterized by mental retardation and autistic behaviors. Further studies of MeCP2 and related genes will explore how they work and how brain-cell activity triggers them. These investigations may uncover other genes and biochemical pathways that underlie autism.

  • Children and families enrolled in the Children’s study also will be invited to take part in research at MIT’s Department of Brain and Cognitive Sciences. Study participants will be tested for their ability to recognize and respond to faces (a critical deficit in autism), the development of specific language skills (also impaired in autism), and gross and fine motor function. Although not a formal part of the study, the data collected by MIT will be fed back into the Children’s study and correlated with the genetic data.


Aaron Patnode | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>