Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children’s Hospital Boston launches major genetic study of autism

13.12.2004


Genetics, genomics, bioinformatics and neuroscience join forces

Children’s Hospital Boston has begun enrolling patients as part of an ambitious new multidisciplinary study of autism that will attempt to pin down its genetic and biochemical causes. Results could be available in a year or two, and could yield a greater biological understanding of autistic spectrum disorders, better diagnostic and prognostic techniques, and potential medical treatments.

More than 90 percent of autism cases are believed to have a genetic component, and multiple genes are believed to be involved. But although much research has been done and many candidate genes identified, none have been clearly implicated. The Children’s study, partially funded by the Nancy Lurie Marks Family Foundation, will bring together researchers in genetics, genomics, bioinformatics, and developmental medicine to try to solve the puzzle.



Autism is a complex behavioral syndrome defined by developmental deficits, particularly communication deficits, impaired social interaction and repetitive behaviors. Affecting about one in 1,000 people, it is now thought of as a spectrum of disorders including autism, Asperger’s syndrome and pervasive developmental disorder. There is no specific medical treatment, although behavioral interventions help children on the autistic spectrum live fuller, more functional lives.

The Children’s researchers plan to enroll 100 to 150 children age 2 years and older per year, along with their parents and affected siblings. They also will enroll 150 unaffected children to serve as controls. The study has several components:

  • The Children’s Developmental Medicine Center will first conduct detailed behavioral evaluations of the children and their families, led by Drs. Janice Ware and Leonard Rappaport. Subjects will be assessed for autistic spectrum disorders and carefully classified according to rigorous clinical research criteria. The goal is to develop behavioral profiles that can be correlated with genetic data. Children and their parents will then give saliva samples for DNA analysis and blood samples for RNA gene expression studies.

  • Led by Drs. Ingrid Holm and Louis Kunkel, researchers in the Children’s Program in Genomics will study the DNA samples, performing association studies and linkage studies to look for genetic differences (polymorphisms) that are shared within families and may accompany clinical manifestations of autistic spectrum disorders.

  • The Program in Genomics also will perform microarray ("gene-chip") studies of RNA from white blood cells to examine differences in gene activity, or expression, among autistic children, their parents, and matched control subjects. By looking at 60,000 genes simultaneously and determining which are turned "on" and "off," the researchers will seek patterns or genetic "signatures" that mark the different autistic spectrum disorders and give clues to their biological causes. The investigators hope to show that gene expression in white blood cells is similar enough to that in brain cells to be a useful surrogate measure, avoiding the need to obtain and test brain tissue.

  • The Children’s Hospital Informatics Program (CHIP), led by Dr. Isaac Kohane, will perform computational analyses to help detect subtle genetic patterns, group patients according to their gene-expression profiles, and apply statistical techniques to determine the reliability of the patterns and linkages found and eliminate false-positive findings. As new data become available, CHIP will factor them in to create the strongest possible predictive models for autistic spectrum disorders.

  • The Neurobiology Program of Children’s Hospital, led by Dr. Michael Greenberg, will examine the connection between autism, a protein called brain-derived neurotrophic factor (BDNF), and several genes known to regulate BDNF. BDNF regulates many aspects of brain development and function, including formation of synapses. Mutation of one gene that regulates BDNF, called MeCP2, has already been linked to Rett syndrome, which is characterized by mental retardation and autistic behaviors. Further studies of MeCP2 and related genes will explore how they work and how brain-cell activity triggers them. These investigations may uncover other genes and biochemical pathways that underlie autism.

  • Children and families enrolled in the Children’s study also will be invited to take part in research at MIT’s Department of Brain and Cognitive Sciences. Study participants will be tested for their ability to recognize and respond to faces (a critical deficit in autism), the development of specific language skills (also impaired in autism), and gross and fine motor function. Although not a formal part of the study, the data collected by MIT will be fed back into the Children’s study and correlated with the genetic data.


Aaron Patnode | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>