Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stressed mice quicker to get skin cancer

09.12.2004


Does stress speed up the onset of skin cancer? The answer, in mice anyway, appears to be "yes." Scientists at the Johns Hopkins Kimmel Cancer Center say that chronic stress may speed up the process in those at high-risk for the disease. Their new study, published in the December issue of the Journal of the American Academy of Dermatology, shows that mice exposed to stressful conditions and cancer-causing UV light develop skin cancers in less than half the time it took for non-stressed mice to grow tumors.



The Hopkins investigators say that if what they are seeing in mice has relevance in man, stress-reducing programs like yoga and meditation may help those at high risk for skin cancer stay healthy longer. "There’s a lot of evidence pointing to the negative effects of chronic stress, which dampens our immune system and impacts various aspects of our health," says Francisco Tausk, M.D., associate professor of dermatology at Johns Hopkins and director of the study. "But, to help create solid treatment strategies, we need a better understanding of the mechanisms of how stressors affect skin cancer development."

Tausk exposed 40 mice to the scent of fox urine - the mouse equivalent of big-time stress - and large amounts of UV light. The first skin tumor in one of the mice appeared after eight weeks of testing. Mice exposed only to UV light began developing tumors 13 weeks later. By 21 weeks of testing, 14 of the 40 stressed mice had at least one tumor, and two non-stressed mice had tumors. Most tumors were squamous cell skin cancers, also known as non-melanoma cancers, but which have the potential to spread to other parts of the body.


Chronic stress is known to suppress the activity of immune system cells that recognize foreign invading cells and target them for destruction. Acute stress, which is episodic and time-limited, such as parachuting or riding a roller coaster, may have the opposite effect of chronic stress. "Acute stress actually can rev up the immune system," Tausk says.

Tausk and his team will conduct more studies to find the cancer pathways influenced by chronic stress. "Stress reduction programs usually are a good option for many people, but we think they may be more important for individuals at high-risk for skin cancer," he says. Fair-skinned people exposed to large amounts of UV light and patients previously diagnosed with squamous cell skin cancer, genetic diseases or organ transplants that predispose them to the disease are considered high-risk. The investigators urge people concerned about their risk for skin cancer to speak with their health-care provider before starting any stress-reduction or exercise program.

This research was funded by the Johns Hopkins Center for Complementary and Alternative Medicine.

Participants in this research are Jason L. Parker, Sabra L. Klein, Warwick L. Morison, and Xaobu Ye from the Johns Hopkins; Martha McClintock from the University of Chicago; Claudio J. Conti from the M.D. Anderson Cancer Center; and Carlos Nousari from the University of Miami.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinskimmelcancercenter.org
http://www.hopkinsdermatology.org
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>