Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study identifies key aspect of immune response against HIV


Results illuminate evolutionary interaction between virus and human immune system

An international research team has identified immune-system genes that appear to play a key role in the body’s defense against HIV, the virus that causes AIDS. The findings may lead to ways of circumventing the virus’s ability to avoid vaccines by rapid mutation. The study in the Dec. 9 issue of Nature also describes how HIV infection is driving human evolution, since individuals with protective versions of the identified genes are more likely to survive and pass those genes along to children. Including researchers from the University of Oxford and the University of KwaZulu-Natal in South Africa, the investigation is a result of a program established by the Partners AIDS Research Center at Massachusetts General Hospital (MGH).

"This study identifies the genetic battleground where the struggle between HIV and the human immune response occurs," says Philip Goulder, MD, PhD, of the Partners AIDS Research Center at MGH, the study’s principal investigator. "The findings will help in understanding precisely how the immune system can succeed or fail against HIV, a prerequisite for a rational approach towards design of an HIV vaccine." Goulder also has an appointment at the Peter Medawar Building for Pathogen Research at Oxford.

The human immune system learns to recognize and attack virus-infected cells through the activity of human leukocyte antigen (HLA) Class 1 molecules, which sit on the surface of cells. When new viruses are being produced within an infected cell, Class 1 molecules grab fragments of viral proteins from within the cell and display them at the cell surface, thereby alerting the body’s "killer" T cells that something foreign is within the cell and it should be destroyed. Three genes called HLA-A, HLA-B, and HLA-C encode Class 1 molecules, and it is known that the HLA-B genes are extremely diverse, with more than 560 versions or "alleles" having been identified. The current study was designed to test the theory that the diversity of HLA Class 1 molecules could reflect differences in the killer T cell activity controlled by those molecules.

The researchers analyzed blood samples from 375 HIV-infected patients at the Doris Duke Medical Research Institute at the University of KwaZulu-Natal to determine whether particular HLA Class 1 molecules control the killer T cell response against the virus. They found that an individual’s version of HLA-B made a significant difference in how well the immune system responds against HIV, whereas the version of HLA-A or HLA-C inherited did not matter.

To examine the impact of Class 1 molecules on blood viral levels, the team studied more than 700 chronically infected African patients and again found that particular versions of HLA-B were associated with high or low plasma virus levels. Additional tests that looked at levels of the helper T cells that are destroyed by HIV and that analyzed samples from Australian patients infected with a different strain of virus all supported the conclusion that the form of the HLA-B molecule patients inherit makes a significant difference in how well their immune systems cope with HIV infection.

Evidence of the virus’s impact on human evolution was found in an analysis of HLA-B alleles in HIV-infected mothers and their infants. Not only are HIV-infected women who have a protective version of HLA-B more likely to survive, they are also less likely to pass the virus along to their children. From an evolutionary standpoint, that finding suggests a trend towards greater frequency of the protective alleles in a population over time.

"We have known for some time that HLA-B molecules are evolving more rapidly than other types, but it has been unclear why this is happening," says Goulder. "These data suggest an explanation for the more rapid evolution of HLA-B in response to other infectious diseases, not only HIV. This is an exciting time for infectious disease research because we are witnessing the evolutionary fight between the human immune system and the HIV virus happening right now, rather than over a period of thousands of years." Goulder is an assistant professor of Medicine at Harvard Medical School.

"The AIDS crisis will only be solved with the development of an effective vaccine," says Bruce Walker, MD, director of the Partners AIDS Reseach Center at MGH and a co-author of the current study. "This study’s results help to focus this effort by telling us what the most effective immune responses are."

In addition to Goulder and Walker, authors of the Nature study are first author Photini Kiepiela, and Isobella Honeyborne, Danni Ramduth, Christina Thobakgale, Senica Chetty, Prenisha Rathnavalu and Hoosen Coovadia of the Doris Duke Medical Research Institute at UKZN; Alasdair Leslie, Katja Pfafferott, Louise Hilton, Peter Zimbwa, Cheryl Day, and Paul Klenerman of the Medawar Building for Pathogen Research at Oxford; Corey Moore, Ian James and Simon Mallal of Royal Perth Hospital in Australia; Sarah Moore, University of Washington; Michael Bunce, Dynal Biotech Ltd, Wirral, UK; Linda Barber, Royal Free Hospital, London; Bette Korber, Santa Fe Institute; and Todd Allen, Christian Brander, Marylyn Addo, and Marcus Altfeld of the Partners AIDS Research Center at MGH. The study was supported by grants from the National Institutes of Health, the Doris Duke Charitable Foundation, the Wellcome Trust, and the Elizabeth Glaser Pediatric AIDS Foundation.

The Partners AIDS Research Center (PARC) was established in 1995 in response to the continuing world-wide AIDS pandemic. The center serves both MGH and Brigham and Women’s Hospital, the founding members of Partners HealthCare, and is a natural progression of the more than twenty-year commitment by the clinicians and scientists at those institutions to HIV and AIDS research and care. The Doris Duke Medical Research Institute at the University of KwaZulu-Natal (UKZN) opened in 2003 and was established through a collaboration between PARC-MGH and UKZN. The institute is focused on interdisciplinary research into AIDS and other health issues affecting South Africa and the entire African continent.

Sue McGreevey | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>