Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies key aspect of immune response against HIV

09.12.2004


Results illuminate evolutionary interaction between virus and human immune system

An international research team has identified immune-system genes that appear to play a key role in the body’s defense against HIV, the virus that causes AIDS. The findings may lead to ways of circumventing the virus’s ability to avoid vaccines by rapid mutation. The study in the Dec. 9 issue of Nature also describes how HIV infection is driving human evolution, since individuals with protective versions of the identified genes are more likely to survive and pass those genes along to children. Including researchers from the University of Oxford and the University of KwaZulu-Natal in South Africa, the investigation is a result of a program established by the Partners AIDS Research Center at Massachusetts General Hospital (MGH).

"This study identifies the genetic battleground where the struggle between HIV and the human immune response occurs," says Philip Goulder, MD, PhD, of the Partners AIDS Research Center at MGH, the study’s principal investigator. "The findings will help in understanding precisely how the immune system can succeed or fail against HIV, a prerequisite for a rational approach towards design of an HIV vaccine." Goulder also has an appointment at the Peter Medawar Building for Pathogen Research at Oxford.



The human immune system learns to recognize and attack virus-infected cells through the activity of human leukocyte antigen (HLA) Class 1 molecules, which sit on the surface of cells. When new viruses are being produced within an infected cell, Class 1 molecules grab fragments of viral proteins from within the cell and display them at the cell surface, thereby alerting the body’s "killer" T cells that something foreign is within the cell and it should be destroyed. Three genes called HLA-A, HLA-B, and HLA-C encode Class 1 molecules, and it is known that the HLA-B genes are extremely diverse, with more than 560 versions or "alleles" having been identified. The current study was designed to test the theory that the diversity of HLA Class 1 molecules could reflect differences in the killer T cell activity controlled by those molecules.

The researchers analyzed blood samples from 375 HIV-infected patients at the Doris Duke Medical Research Institute at the University of KwaZulu-Natal to determine whether particular HLA Class 1 molecules control the killer T cell response against the virus. They found that an individual’s version of HLA-B made a significant difference in how well the immune system responds against HIV, whereas the version of HLA-A or HLA-C inherited did not matter.

To examine the impact of Class 1 molecules on blood viral levels, the team studied more than 700 chronically infected African patients and again found that particular versions of HLA-B were associated with high or low plasma virus levels. Additional tests that looked at levels of the helper T cells that are destroyed by HIV and that analyzed samples from Australian patients infected with a different strain of virus all supported the conclusion that the form of the HLA-B molecule patients inherit makes a significant difference in how well their immune systems cope with HIV infection.

Evidence of the virus’s impact on human evolution was found in an analysis of HLA-B alleles in HIV-infected mothers and their infants. Not only are HIV-infected women who have a protective version of HLA-B more likely to survive, they are also less likely to pass the virus along to their children. From an evolutionary standpoint, that finding suggests a trend towards greater frequency of the protective alleles in a population over time.

"We have known for some time that HLA-B molecules are evolving more rapidly than other types, but it has been unclear why this is happening," says Goulder. "These data suggest an explanation for the more rapid evolution of HLA-B in response to other infectious diseases, not only HIV. This is an exciting time for infectious disease research because we are witnessing the evolutionary fight between the human immune system and the HIV virus happening right now, rather than over a period of thousands of years." Goulder is an assistant professor of Medicine at Harvard Medical School.

"The AIDS crisis will only be solved with the development of an effective vaccine," says Bruce Walker, MD, director of the Partners AIDS Reseach Center at MGH and a co-author of the current study. "This study’s results help to focus this effort by telling us what the most effective immune responses are."

In addition to Goulder and Walker, authors of the Nature study are first author Photini Kiepiela, and Isobella Honeyborne, Danni Ramduth, Christina Thobakgale, Senica Chetty, Prenisha Rathnavalu and Hoosen Coovadia of the Doris Duke Medical Research Institute at UKZN; Alasdair Leslie, Katja Pfafferott, Louise Hilton, Peter Zimbwa, Cheryl Day, and Paul Klenerman of the Medawar Building for Pathogen Research at Oxford; Corey Moore, Ian James and Simon Mallal of Royal Perth Hospital in Australia; Sarah Moore, University of Washington; Michael Bunce, Dynal Biotech Ltd, Wirral, UK; Linda Barber, Royal Free Hospital, London; Bette Korber, Santa Fe Institute; and Todd Allen, Christian Brander, Marylyn Addo, and Marcus Altfeld of the Partners AIDS Research Center at MGH. The study was supported by grants from the National Institutes of Health, the Doris Duke Charitable Foundation, the Wellcome Trust, and the Elizabeth Glaser Pediatric AIDS Foundation.

The Partners AIDS Research Center (PARC) was established in 1995 in response to the continuing world-wide AIDS pandemic. The center serves both MGH and Brigham and Women’s Hospital, the founding members of Partners HealthCare, and is a natural progression of the more than twenty-year commitment by the clinicians and scientists at those institutions to HIV and AIDS research and care. The Doris Duke Medical Research Institute at the University of KwaZulu-Natal (UKZN) opened in 2003 and was established through a collaboration between PARC-MGH and UKZN. The institute is focused on interdisciplinary research into AIDS and other health issues affecting South Africa and the entire African continent.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>