Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein delivered via genetically engineered virus slowed glioblasoma multiforme growth

07.12.2004


Despite aggressive treatment, glioblastoma multiforme (GBM) – the most common and deadly of brain cancers – usually claims the lives of its victims within six to 12 months of diagnosis. This statistic has changed little over the years, largely because the cancer grows so quickly that neither surgery, radiation, or chemotherapy can stop it.



Now, researchers at Cedars-Sinai Medical Center have found that a small protein called hsFlt3L delivered via a genetically engineered virus increased the number of immune cells in the brain and significantly slowed tumor growth, increasing the survival of laboratory rats in pre-clinical studies. The study, published in the December issue of the journal, Molecular Therapy, may lead to a new way to treat patients with GBM. "Importantly, our study is the first to show that GBM tumors shrank or were completely eliminated in lab rats, which is likely due to the ability of the protein, hsFlt3L to stimulate the production of fully mature immune cells within the brain," said Maria Castro, Ph.D., co-director of the Gene Therapeutics Research Institute at Cedars-Sinai Medical Center and the senior author of the study. "Since gene therapy has given us the tool to deliver this protein, our hope is to translate these laboratory studies into clinical trials in patients with GBM."

GBM tumors develop in the supportive tissue of the brain and grow quickly, often becoming very large before a person experiences symptoms and is diagnosed. Surgery is typically performed to remove as much of the tumor as possible and followed with radiation and/or chemotherapy to slow progression of the disease. But despite aggressive treatment, the tumor recurs and patients usually die within a year’s time. Because GBM is so aggressive, the disease has been the target of a number of laboratory studies and clinical trials investigating the effectiveness of gene therapy to deliver novel therapeutic agents to the brain. Most of these have investigated the use of the suicide gene from the herpes simplex virus to develop a gene therapy approach that kills cancer cells, in the presence of the antiviral drug, gancyclovir. In laboratory studies, this type of gene therapy has proved almost 100 percent effective. But in clinical trials, it has had limited effectiveness, suggesting that the virus is not able to deliver the suicide gene effectively into a large tumor mass. "Importantly, results from these studies showed us that gene therapy was safe, but that we needed to design a viral vector that would harness the power of the immune system to help eliminate the tumor," commented Dr. Castro.


Genetically engineered viruses are used to transport genes and/or proteins into cells and have been used in gene therapy research for the last ten years. Just like a viral infection, they work by tricking cells into accepting them as part of their own genetic coding. To make them safe, scientists remove the genetic viral genes that cause infection and engineer them so that they stop reproducing and also carry therapeutic genes. In this study, researchers from the "Gene Therapeutics Research Institute" team, led by Drs. Castro and Pedro Lowenstein, investigated the effectiveness of an anti-brain tumor therapy using hsFlt3L, a protein that has a unique ability to increase the number of immune cells when delivered into the brain. Specifically, these immune cells are called dendritic cells and work by presenting antigens – or foreign invaders that enter the body – and inducing the generation of cell-killing T-lymphocytes. Because the brain lacks dendritic cells and is protected by the blood brain barrier, the investigators tested an adenoviral vector that had been genetically manipulated to selectively express hsFlt3L to find out if it would increase the number of dendritic cells in the brain of laboratory rats with GBM.

To evaluate whether hsFlt3L could shrink brain tumors and prolong survival, rats with GBM were injected with increasing doses of the engineered virus expressing hsFlt3L or a saline placebo that was used as a control. The investigators found that 70 percent of the rats treated with hsFlt3L survived long-term, for over a year, when the higher dose was used, and that it did not cause adverse immune reactions in the normal brain. In contrast, the rats treated with placebo substances died from their tumors within one week after the start of the treatment. "Taking into account both the effectiveness of the treatment in the preclinical GBM animal model and also the lack of overt adverse side effects to the surrounding normal brain, we hope to start clinical trials using this combined immune and suicide gene therapy approach within the next three years," said Dr Castro.

Among rats treated with hsFlt3L, the investigators found that 33 percent were completely tumor free at three months, while all those who survived for six months or longer had no tumors at all. Moreover, no rats died between the three and six months’ time points. "These results show that tumor growth was greatly inhibited in rats treated with hsFlt3L and reflect an ongoing battle between the tumor and the immune system," said Dr. Castro. "In other words, hsFlt3L stimulated an immune response as evidenced by an increase in the number of dendritic cells in the brain and led to complete elimination of the tumor in most of the rats, while slowing down tumor growth in the others. The combined data presented has important implications for using immunotherapy to treat brain tumors in patients with GBM."

Kelli Hanley | EurekAlert!
Further information:
http://www.cshs.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>