Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study discovers why "persister" cells never say die

06.12.2004


NU biologist isolates gene making infections drug-resistant



Northeastern University today announced that biologist Kim Lewis has discovered the gene that prevents antibiotics from successfully destroying infections within biofilm. For years, scientists have struggled to understand why a certain type of infection – known as biofilms – are often resistant to antibiotics. Biofilms contain cells that are identical to the infecting cells, but are not corrupted and destroyed by antibiotics. Lewis discovered these “persister” cells, contain a gene (HipA) that generates a toxin (the ReIE toxin) which puts the cell into hibernation and because antibiotics must work on growing cells to destroy them, the hibernating cells can outlast the antibiotic and then repopulate the infection.

The results of the study appears in the most recent issue of the Journal of Bacteriology, titled “Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli.” Lewis, the lead author, worked with NU graduate students Iris Keren, Devang Shaw and Amy Spoering , as well as Niilo Kaldalu of Tartu University in Estonia. “ The implications for the discovery are significant; medical science is racing the clock against increasingly drug-tolerant infections. Biofilm infections are notoriously difficult to stamp out. Armed with the knowledge of the HipA gene that allows the infections to persist, sometime for years, biologists can look for ways to deactivate the gene and wipe out the infection,” says Lewis.


Biofilm infections, which attach to a surface while encased in a membrane, typically attack surgically implanted medical devices, such as mechanical heart valves or artificial joints. They can also take the form of periodontal disease, ear infections or fatal lung infections. The infection can be nearly impossible to eradicate, requiring implants to be removed at great risk and cost. Deleting or deactivating the HipA gene could save thousands of lives and millions of dollars.

Genevieve Haas | EurekAlert!
Further information:
http://www.neu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>