Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study discovers why "persister" cells never say die

06.12.2004


NU biologist isolates gene making infections drug-resistant



Northeastern University today announced that biologist Kim Lewis has discovered the gene that prevents antibiotics from successfully destroying infections within biofilm. For years, scientists have struggled to understand why a certain type of infection – known as biofilms – are often resistant to antibiotics. Biofilms contain cells that are identical to the infecting cells, but are not corrupted and destroyed by antibiotics. Lewis discovered these “persister” cells, contain a gene (HipA) that generates a toxin (the ReIE toxin) which puts the cell into hibernation and because antibiotics must work on growing cells to destroy them, the hibernating cells can outlast the antibiotic and then repopulate the infection.

The results of the study appears in the most recent issue of the Journal of Bacteriology, titled “Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli.” Lewis, the lead author, worked with NU graduate students Iris Keren, Devang Shaw and Amy Spoering , as well as Niilo Kaldalu of Tartu University in Estonia. “ The implications for the discovery are significant; medical science is racing the clock against increasingly drug-tolerant infections. Biofilm infections are notoriously difficult to stamp out. Armed with the knowledge of the HipA gene that allows the infections to persist, sometime for years, biologists can look for ways to deactivate the gene and wipe out the infection,” says Lewis.


Biofilm infections, which attach to a surface while encased in a membrane, typically attack surgically implanted medical devices, such as mechanical heart valves or artificial joints. They can also take the form of periodontal disease, ear infections or fatal lung infections. The infection can be nearly impossible to eradicate, requiring implants to be removed at great risk and cost. Deleting or deactivating the HipA gene could save thousands of lives and millions of dollars.

Genevieve Haas | EurekAlert!
Further information:
http://www.neu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>