Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of 2002 Canadian Forest Fires Felt 700 Miles Away in Baltimore, Maryland

03.12.2004


Researchers from the Johns Hopkins Bloomberg School of Public Health analyzed how airborne particulate matter from forest fires in the Canadian providence of Quebec traveled more than 700 miles to homes in Baltimore, Md. The study authors found a dramatic increase in outdoor and indoor fine particulate matter – an atmospheric pollutant that is harmful to people with respiratory diseases– in Baltimore during the first weekend of July 2002, which coincided with several forest fires in Quebec. The same fine particulate matter that the authors found to be transported across large distances readily penetrated people’s homes where they spend most of their time. The researchers believe this should be a public health concern because fine particulate matter can penetrate deep into the lungs. The study is published in the current online issue of Environmental Science & Technology.

“This study provides a dramatic example of the significance that global air pollution has, not only on the outdoor air quality in our communities, but on air quality indoors where even the most susceptible among us look for protection,” said Timothy J. Buckley, PhD, MHS, associate professor in the Bloomberg School of Public Health’s Department of Environmental Health Sciences and the study’s senior author.

The researchers used satellite images, trajectory models, light detection and ranging measurements to track emissions from the Canadian forest fires to levels of particulate matter in Baltimore. During the peak of the episodes, ambient PM 2.5 levels increased eight-fold from 25 ug/m3 to 199 ug/m3 on July 7, 2002. The Environmental Protection Agency’s National Ambient Air Quality Standard was exceeded on this particular day. Indoor levels closely tracked the outdoor concentrations, indicating that being indoors at home offered little protection from the pollution episode. At the peak of the episode, PM2.5 levels as high as 366 ug/m3 were recorded inside.


The researchers said that their study is a stark example of how air pollution can impact vulnerable individuals in communities hundreds of miles away. In light of the reported findings, the study authors suggest that health advisories that encourage people to stay indoors during high particulate matter events should be reviewed.

“Although the source discussed in this study is natural, similar analogies can be drawn about the long-range transport of pollutants from man-made sources. This underscores the point we have long realized – air pollution is both a local and global issue. In addition to working locally, we need to bring other countries together to tackle the issue of transcontinental transport of air pollution,” said Amir Sapkota, PhD, lead author of the study and a post-doctoral fellow in the Bloomberg School of Public Health’s Department of Environmental Health Sciences.

The study was supported by grants from the Environmental Protection Agency and Johns Hopkins Center for Urban Environmental Health.

Amir Sapkota, J. Morel Symons, Lu Wang, Patrick N. Breysse and Timothy J. Buckley, from the Johns Hopkins Bloomberg School of Public Health, co-authored the study. Additional co-authors were Jan Kleissl, Marc B. Parlange, John Ondov, Gregory B. Diette and Peyton A. Eggleston.

Kenna L. Lowe | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>