Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of 2002 Canadian Forest Fires Felt 700 Miles Away in Baltimore, Maryland

03.12.2004


Researchers from the Johns Hopkins Bloomberg School of Public Health analyzed how airborne particulate matter from forest fires in the Canadian providence of Quebec traveled more than 700 miles to homes in Baltimore, Md. The study authors found a dramatic increase in outdoor and indoor fine particulate matter – an atmospheric pollutant that is harmful to people with respiratory diseases– in Baltimore during the first weekend of July 2002, which coincided with several forest fires in Quebec. The same fine particulate matter that the authors found to be transported across large distances readily penetrated people’s homes where they spend most of their time. The researchers believe this should be a public health concern because fine particulate matter can penetrate deep into the lungs. The study is published in the current online issue of Environmental Science & Technology.

“This study provides a dramatic example of the significance that global air pollution has, not only on the outdoor air quality in our communities, but on air quality indoors where even the most susceptible among us look for protection,” said Timothy J. Buckley, PhD, MHS, associate professor in the Bloomberg School of Public Health’s Department of Environmental Health Sciences and the study’s senior author.

The researchers used satellite images, trajectory models, light detection and ranging measurements to track emissions from the Canadian forest fires to levels of particulate matter in Baltimore. During the peak of the episodes, ambient PM 2.5 levels increased eight-fold from 25 ug/m3 to 199 ug/m3 on July 7, 2002. The Environmental Protection Agency’s National Ambient Air Quality Standard was exceeded on this particular day. Indoor levels closely tracked the outdoor concentrations, indicating that being indoors at home offered little protection from the pollution episode. At the peak of the episode, PM2.5 levels as high as 366 ug/m3 were recorded inside.


The researchers said that their study is a stark example of how air pollution can impact vulnerable individuals in communities hundreds of miles away. In light of the reported findings, the study authors suggest that health advisories that encourage people to stay indoors during high particulate matter events should be reviewed.

“Although the source discussed in this study is natural, similar analogies can be drawn about the long-range transport of pollutants from man-made sources. This underscores the point we have long realized – air pollution is both a local and global issue. In addition to working locally, we need to bring other countries together to tackle the issue of transcontinental transport of air pollution,” said Amir Sapkota, PhD, lead author of the study and a post-doctoral fellow in the Bloomberg School of Public Health’s Department of Environmental Health Sciences.

The study was supported by grants from the Environmental Protection Agency and Johns Hopkins Center for Urban Environmental Health.

Amir Sapkota, J. Morel Symons, Lu Wang, Patrick N. Breysse and Timothy J. Buckley, from the Johns Hopkins Bloomberg School of Public Health, co-authored the study. Additional co-authors were Jan Kleissl, Marc B. Parlange, John Ondov, Gregory B. Diette and Peyton A. Eggleston.

Kenna L. Lowe | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>