Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of 2002 Canadian Forest Fires Felt 700 Miles Away in Baltimore, Maryland

03.12.2004


Researchers from the Johns Hopkins Bloomberg School of Public Health analyzed how airborne particulate matter from forest fires in the Canadian providence of Quebec traveled more than 700 miles to homes in Baltimore, Md. The study authors found a dramatic increase in outdoor and indoor fine particulate matter – an atmospheric pollutant that is harmful to people with respiratory diseases– in Baltimore during the first weekend of July 2002, which coincided with several forest fires in Quebec. The same fine particulate matter that the authors found to be transported across large distances readily penetrated people’s homes where they spend most of their time. The researchers believe this should be a public health concern because fine particulate matter can penetrate deep into the lungs. The study is published in the current online issue of Environmental Science & Technology.

“This study provides a dramatic example of the significance that global air pollution has, not only on the outdoor air quality in our communities, but on air quality indoors where even the most susceptible among us look for protection,” said Timothy J. Buckley, PhD, MHS, associate professor in the Bloomberg School of Public Health’s Department of Environmental Health Sciences and the study’s senior author.

The researchers used satellite images, trajectory models, light detection and ranging measurements to track emissions from the Canadian forest fires to levels of particulate matter in Baltimore. During the peak of the episodes, ambient PM 2.5 levels increased eight-fold from 25 ug/m3 to 199 ug/m3 on July 7, 2002. The Environmental Protection Agency’s National Ambient Air Quality Standard was exceeded on this particular day. Indoor levels closely tracked the outdoor concentrations, indicating that being indoors at home offered little protection from the pollution episode. At the peak of the episode, PM2.5 levels as high as 366 ug/m3 were recorded inside.


The researchers said that their study is a stark example of how air pollution can impact vulnerable individuals in communities hundreds of miles away. In light of the reported findings, the study authors suggest that health advisories that encourage people to stay indoors during high particulate matter events should be reviewed.

“Although the source discussed in this study is natural, similar analogies can be drawn about the long-range transport of pollutants from man-made sources. This underscores the point we have long realized – air pollution is both a local and global issue. In addition to working locally, we need to bring other countries together to tackle the issue of transcontinental transport of air pollution,” said Amir Sapkota, PhD, lead author of the study and a post-doctoral fellow in the Bloomberg School of Public Health’s Department of Environmental Health Sciences.

The study was supported by grants from the Environmental Protection Agency and Johns Hopkins Center for Urban Environmental Health.

Amir Sapkota, J. Morel Symons, Lu Wang, Patrick N. Breysse and Timothy J. Buckley, from the Johns Hopkins Bloomberg School of Public Health, co-authored the study. Additional co-authors were Jan Kleissl, Marc B. Parlange, John Ondov, Gregory B. Diette and Peyton A. Eggleston.

Kenna L. Lowe | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>