Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer analysis shows scientists could reconstruct the genome of the mammalian common ancestor

01.12.2004


Contrary to the movie Jurassic Park, in which scientists recreate dinosaurs from ancient DNA, genetic material more than about 50 thousand years old cannot be reliably recovered. Nevertheless, a team of scientists has now demonstrated that computers could be used to reconstruct with 98 percent accuracy the DNA of a creature that lived at the time of the dinosaurs more than 75 million years ago--a small, furry nocturnal animal that was the common ancestor of all placental mammals, including humans.

Knowing this ancestral mammal’s complete genome--the sequence of As, Cs, Ts, and Gs in the DNA that made up its chromosomes--would not mean that scientists could bring it to life. (For one thing, synthesizing that much DNA would be prohibitively expensive and technically difficult.)

But that’s not the point. The point is to understand the evolution of humans and other mammals at the molecular level, said David Haussler, professor of biomolecular engineering at the University of California, Santa Cruz. "We will be able to trace the molecular evolution of our genome over the past 75 million years. It’s a very exciting new way to think about our origins, a kind of DNA-based archaeology to understand how we came to be," said Haussler, a Howard Hughes Medical Institute (HHMI) investigator and director of UCSC’s Center for Biomolecular Science and Engineering.



Haussler and Mathieu Blanchette, a postdoctoral researcher at UCSC who is now at McGill University, teamed up with Eric Green, scientific director at the National Human Genome Research Institute (NHGRI) and director of the NIH Intramural Sequencing Center, and Webb Miller, professor of biology and computer science and engineering at Pennsylvania State University, to look at the possibility of reconstructing the ancestral mammalian genome. A paper describing their findings appears in the December issue of the journal Genome Research.

The study is an extension of ongoing research in comparative genomics--the effort to understand the human genome by comparing it with the genomes of other species. By comparing the human genome to the ancestral genome, scientists may learn much more than they can from comparisons with other living species, such as the mouse, rat, and chimpanzee, Haussler said. "If we find a DNA sequence in the human genome that is missing in the corresponding place in the mouse genome, we can’t tell whether that DNA was inserted in the evolution of humans from the mammalian ancestor or deleted in the evolution of mice," he said. "If the ancestral genome is available, this ambiguity disappears."

The researchers developed a computational procedure for reconstructing ancestral genome sequences that was based primarily on Miller’s widely used genome comparison software, together with an assortment of new computer algorithms devised for this project. To test the reconstruction process, they created an artificial set of mammalian genome sequences for which the ancestral sequence was known.

Blanchette, who is the first author of the paper, generated this artificial evolutionary tree by creating a massive software program to simulate all the known processes that modify DNA as it evolves. The program was based on a huge amount of data from Green’s research at NHGRI, where scientists are doing comparative analyses of genomic sequences from many different vertebrate species. In particular, the researchers focused on a region called the CFTR locus, which includes the gene involved in cystic fibrosis. This region--encompassing ten genes and adjacent stretches of DNA, for a total of more than one million base pairs or "letters" of genetic code--had been completely sequenced in many different mammals. "This region served as an example of the evolutionary changes that happened in all these different mammalian lineages. [Blanchette] took all of the information we learned from detailed examination of this one region and incorporated it into a software program that is able to simulate mammalian evolution at the molecular level," Haussler said.

The researchers applied the software to a hypothetical ancestral DNA sequence, artificially evolving the DNA along all the various pathways of mammalian evolution to create simulated modern DNA sequences for 20 different species. Then they used their reconstruction procedure (a completely separate process that incorporates no information from the simulation process) to recreate the ancestral sequence. Comparing the reconstructed sequence with the original ancestral sequence, they found that it was 98 percent accurate.

The next step was to apply the reconstruction process to the actual genomic sequences for the CFTR locus in the 19 mammalian species for which this DNA sequence was available, including humans. The researchers evaluated the accuracy of this reconstruction by comparing it to species not included in the group from which it was derived, such as chickens and opossums. These comparisons suggested an accuracy of more than 99 percent in the places they could test, including the cystic fibrosis gene itself. "Overall, we think that we can reconstruct the DNA sequences of the ancestral genome with an accuracy of more than 98 percent," Haussler said. "That is much higher accuracy than people expected would be possible."

Haussler said he hopes these findings will encourage the additional genome sequencing that would be needed to do a complete reconstruction of the ancestral mammalian genome. Living mammals, from apes to bats to whales, are all variations on a common mammalian theme. Comparisons with their common ancestor can reveal new insights into not only the core biology that all mammals share in common, but also the unique traits that define each species, he said.

Nearly complete genome sequences are available now for five mammals, and about 20 would be needed for an accurate reconstruction. NHGRI and other organizations are planning to fund sequencing projects for a number of additional mammals, but it remains to be seen whether and how soon enough genomic data will be available, Haussler said.

"It’s a great challenge to reconstruct the history of the entire human genome, but it’s the key to understanding what makes us special," he said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>