Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study by UGA researcher shows that Salmonella uses hydrogen as an energy source

30.11.2004


New research, headed by microbiologists from the University of Georgia, show for the first time that Salmonella – a widespread and often deadly bacterial pathogen – use molecular hydrogen to grow and become virulent. The discovery represents a way that diseases caused by Salmonella and other enteric infections could be lessened or even eliminated.



The research, just published in the journal Infection and Immunity, was led by Rob Maier, Georgia Research Alliance Eminent Scholar and Ramsey Professor of Microbiology at UGA. Other authors of the paper from UGA were and researcher Adriana Olczak and research coordinator Susan Maier; and Shilpa Soni and John Gunn from Ohio State University. "This builds on our earlier findings that major human pathogens are using an unexpected energy source," said Maier. "This new work expands our knowledge that molecular hydrogen is very important in the process of diseases caused by these organisms."

Such enteric pathogens as Salmonella are responsible for an estimated 2 million deaths a year and cause millions more cases of diarrheal illnesses, even in developed countries. Maier was the first to discover that hydrogen is not lost from the body as a waste product, as researchers previously thought, but remains at substantial levels and is an energy source for pathogenic bacteria. This knowledge that human pathogens can grow on hydrogen while residing in an animal may have profound implications for the treatment of some diseases.


In 2002, Maier published in the journal Science evidence that the gastric bacterium Helicobacter pylori, which gives rise to peptic ulcers, gastritis and some kinds of gastric cancers, needs hydrogen as an energy source. The new research extends those earlier findings to Salmonella.

The work has been possible because of the increasing number of entire genomes that are being sequenced for everything from bacteria to humans. Knowing the exact position of individual genes on the entire genome allows scientists a much richer understanding of how disease processes work than ever before. "From the gene sequence we found that Salmonella was predicted to have three distinct membrane-associated enzymes that split molecular hydrogen using a unique metal center, which is composed of nickel, iron, cyanide and carbon monoxide," said Maier. "Humans don’t make this kind of metal cluster in cells, and so it’s an excellent target for therapeutic intervention. Also, making nickel unavailable to the cells by use of metal sequestering agents would be expected to stop the hydrogen using reactions required for growth of the bacterium."

The new research showed that each of the three membrane-associated, hydrogen-utilizing enzymes in Salmonella is coupled to a respiratory pathway that uses oxygen as the terminal electron acceptor. This permits growth of the pathogen.

Maier believed that these enzymes might enable bacteria to glean energy from the splitting of molecular hydrogen. Because the high-energy gas produced by the reactions of normal flora bacteria in the intestinal tract is freely diffusible, it can be measured within tissues colonized by pathogens. So, using mice as a model system, Maier and his colleagues were able to find that, indeed, Salmonella use molecular hydrogen as an energy source to grow and cause disease.

It should be noted that the team studied a type of Salmonella enterica called Typhimurium, a common food-poisoning bacterium closely related to a different strain of Salmonella that causes typhoid fever.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>