Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain imaging with MRI could replace lie detector

30.11.2004


When people lie, they use different parts of their brains than when they tell the truth, and these brain changes can be measured by functional magnetic resonance imaging (fMRI), according to a study presented today at the annual meeting of the Radiological Society of North America. The results suggest that fMRI may one day prove a more accurate lie detector than the polygraph.

"There may be unique areas in the brain involved in deception that can be measured with fMRI," said lead author Scott H. Faro, M.D. "We were able to create consistent and robust brain activation related to a real-life deception process." Dr. Faro is professor and vice-chairman of radiology and director of the Functional Brain Imaging Center and Clinical MRI at Temple University School of Medicine in Philadelphia.

The researchers created a relevant situation for 11 normal volunteers. Six of the volunteers were asked to shoot a toy gun with blank bullets and then to lie about their participation. The non-shooters were asked to tell the truth about the situation. The researchers examined the individuals with fMRI, while simultaneously administering a polygraph exam. The polygraph measured three physiologic responses: respiration, blood pressure and galvanic skin conductance, or the skin’s ability to conduct electricity, which increases when an individual perspires.



The volunteers were asked questions that pertained to the situation, along with unrelated control questions. In all cases, the polygraph and fMRI accurately distinguished truthful responses from deceptive ones. fMRI showed activation in several areas of the brain during the deception process. These areas were located in the frontal (medial inferior and pre-central), temporal (hippocampus and middle temporal), and limbic (anterior and posterior cingulate) lobes. During a truthful response, the fMRI showed activation in the frontal lobe (inferior and medial), temporal lobe (inferior) and cingulate gyrus.

Overall, there were regional differences in activation between deceptive and truthful conditions. Furthermore, there were more areas of the brain activated during the deception process compared to the truth-telling condition.

Dr. Faro’s study is the first to use polygraph correlation and a modified version of positive control questioning techniques in conjunction with fMRI. It is also the first to involve a real-life stimulus. "I believe this is a vital approach to understand this very complex type of cognitive behavior," Dr. Faro said. "The real-life stimulus is critical if this technique is to be developed into a practical test of deception." Because physiologic responses can vary among individuals and, in some cases, can be regulated, the polygraph is not considered a wholly reliable means of lie detection. According to Dr. Faro, it is too early to tell if fMRI can be "fooled" in the same manner.

However, these results are promising in that they suggest a consistency in brain patterns that might be beyond conscious control. "We have just begun to understand the potential of fMRI in studying deceptive behavior," Dr. Faro said. "We plan to investigate the potential of fMRI both as a stand-alone test and as a supplement to the polygraph with the goal of creating the most accurate test for deception."

Dr. Faro’s co-authors on this paper were Feroze Mohamed, Ph.D., Nathan Gordon, M.S., Steve Platek, Ph.D, Mike Williams, Ph.D., and Harris Ahmad, M.D.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>