Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain imaging with MRI could replace lie detector

30.11.2004


When people lie, they use different parts of their brains than when they tell the truth, and these brain changes can be measured by functional magnetic resonance imaging (fMRI), according to a study presented today at the annual meeting of the Radiological Society of North America. The results suggest that fMRI may one day prove a more accurate lie detector than the polygraph.

"There may be unique areas in the brain involved in deception that can be measured with fMRI," said lead author Scott H. Faro, M.D. "We were able to create consistent and robust brain activation related to a real-life deception process." Dr. Faro is professor and vice-chairman of radiology and director of the Functional Brain Imaging Center and Clinical MRI at Temple University School of Medicine in Philadelphia.

The researchers created a relevant situation for 11 normal volunteers. Six of the volunteers were asked to shoot a toy gun with blank bullets and then to lie about their participation. The non-shooters were asked to tell the truth about the situation. The researchers examined the individuals with fMRI, while simultaneously administering a polygraph exam. The polygraph measured three physiologic responses: respiration, blood pressure and galvanic skin conductance, or the skin’s ability to conduct electricity, which increases when an individual perspires.



The volunteers were asked questions that pertained to the situation, along with unrelated control questions. In all cases, the polygraph and fMRI accurately distinguished truthful responses from deceptive ones. fMRI showed activation in several areas of the brain during the deception process. These areas were located in the frontal (medial inferior and pre-central), temporal (hippocampus and middle temporal), and limbic (anterior and posterior cingulate) lobes. During a truthful response, the fMRI showed activation in the frontal lobe (inferior and medial), temporal lobe (inferior) and cingulate gyrus.

Overall, there were regional differences in activation between deceptive and truthful conditions. Furthermore, there were more areas of the brain activated during the deception process compared to the truth-telling condition.

Dr. Faro’s study is the first to use polygraph correlation and a modified version of positive control questioning techniques in conjunction with fMRI. It is also the first to involve a real-life stimulus. "I believe this is a vital approach to understand this very complex type of cognitive behavior," Dr. Faro said. "The real-life stimulus is critical if this technique is to be developed into a practical test of deception." Because physiologic responses can vary among individuals and, in some cases, can be regulated, the polygraph is not considered a wholly reliable means of lie detection. According to Dr. Faro, it is too early to tell if fMRI can be "fooled" in the same manner.

However, these results are promising in that they suggest a consistency in brain patterns that might be beyond conscious control. "We have just begun to understand the potential of fMRI in studying deceptive behavior," Dr. Faro said. "We plan to investigate the potential of fMRI both as a stand-alone test and as a supplement to the polygraph with the goal of creating the most accurate test for deception."

Dr. Faro’s co-authors on this paper were Feroze Mohamed, Ph.D., Nathan Gordon, M.S., Steve Platek, Ph.D, Mike Williams, Ph.D., and Harris Ahmad, M.D.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>