Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Highlights Importance of Worker Skin Exposure to Pesticides and Limitations of Measurement Methods

24.11.2004


Agricultural pesticide workers are not only exposed to pesticides from inhalation, but also through their skin. The dermal route of exposure to chlorpyrifos, a common agricultural pesticide, contributes substantially to workers’ total exposure, according to researchers from the Johns Hopkins Bloomberg School of Public Health and the U.S. Environmental Protection Agency (EPA), who analyzed agricultural test data provided by pesticide manufacturers. The study authors report that accurate methods for estimating dermal exposure are important because they form the basis for assessing and protecting worker health. The study is published in the current online issue of Annals of Occupational Hygiene.



“Although our study’s findings aren’t unexpected, they highlight the significance of dermal exposure among pesticide workers,” said Laura Geer, the study’s lead author and a PhD student in the Bloomberg School of Public Health’s Department of Environmental Health Sciences.

Geer explained that the EPA requires pesticide manufacturers to evaluate the potential for exposure to pesticide handlers. “Since there is a paucity of such data in the literature, we sought to mine these data. Our study demonstrates their utility and value to answer questions fundamental to dermal exposure and to protecting worker health,” she said. “For example, from these data, we were able to estimate the fraction of pesticide absorbed through the skin based on real-world agricultural worker monitoring.”


The authors analyzed data from five studies, including a total of 80 workers across nine states (Alabama, Virginia, Georgia, Texas, Arizona, Kentucky, Michigan, Florida and Ohio). The participants held a variety of pesticide-related jobs, including preparing pesticide formulations, loading the pesticide into application devices, applying the pesticide and inspecting crops after application.

The researchers found that dermal exposure represents a substantial portion of total exposure, even though exposure levels were found below current occupational health standards and guidelines. For nearly one-half of the workers monitored (34 out of 77) in this study, more chlorpyrifos was absorbed through the skin than was inhaled. The researchers compared methods for estimating worker exposure by comparing residues found on clothing to levels of pesticide metabolites in urine. They observed a substantial difference, indicating that researchers may not be able to precisely evaluate worker exposure using these methods.

This difference in estimates makes it difficult for researchers to reconcile exposure and dose, increasing the uncertainty in assessing worker risk and the development of effective protective strategies. The study authors recommend that additional work and research be done. The authors also note that their study demonstrates that the EPA’s Pesticide Registrant Database offers a unique and valuable resource to researchers for the purpose of improving methods for assessing exposure and protecting worker health.

“Worker dermal exposure is under-appreciated in the United States. Our study brings to the forefront the potential for workplace chemicals to be absorbed through the skin and the need to develop better methods to assess this exposure, so that ultimately we can prevent it and protect worker health,” said Timothy J. Buckley, PhD, MHS, associate professor in the Bloomberg School of Public Health’s Department of Environmental Health Sciences and the study’s senior author.

The study was supported by the United States Environmental Protection Agency.

L.A. Geer, N. Cardello, J. D. Roberts and T. J. Buckley, from the Johns Hopkins Bloomberg School of Public Health, co-authored the study. Additional co-authors from the U.S. Environmental Protection Agency were M. J. Dellarco, T.J. Leighton and R.P. Zendzian.

Kenna L. Lowe | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>