Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To weigh less, eat more

18.11.2004


Two new Penn State studies show that people who pursue a healthy, low-fat, low-energy-density diet that includes more water-rich foods, such as fruits and vegetables, consume more food but weigh less than people who eat a more energy-dense diet.



Dr. Barbara Rolls, who holds the Guthrie Chair of Nutrition in Penn State’s College of Health and Human Development, directed the studies. She says, "In one of the studies, we looked at the eating patterns of 7,500 men and women who constituted a representative sample of American adults. In the other study, 101 obese women were counseled to increase their intake of water-rich foods and to select reduced-fat foods rather than full-fat ones. In both cases eating more low-energy-dense, water-rich foods, such as fruits and vegetables, was associated with lower body weights. "Decreasing the energy density of your diet by choosing more low-energy-dense foods, such as fruits and vegetables, can be a successful strategy to lose weight without counting calories or fat grams," she adds.

Both studies were detailed today, Wednesday, Nov. 17, at the annual meeting of the North American Association for the Study of Obesity in Las Vegas, Nevada.


Dr. Jenny H. Ledikwe, postdoctoral fellow in nutritional epidemiology, conducted the study in which she looked at the diet patterns of 7,500 typical Americans. She calculated the average daily energy density of their intake using two 24-hour recalls from the 1994-96 U.S. Department of Agriculture Continuing Survey of Food Intakes by Individuals. She then compared the participants with low, medium and high energy density (ED) diets.

Ledikwe found that despite the fact that the people in the low energy density group ate a greater weight of food than those in the high energy density group, they consumed fewer calories and weighed less. She notes, "Individuals who ate low-fat, high-fiber diets rich in fruits and vegetables weighed less, consumed more food and had healthier eating patterns."

Julie Ello-Martin, doctoral candidate in nutrition, conducted the study in which women were counseled. In this study, 101 obese women were divided into two groups. One group, the energy density (ED) group, was counseled to eat more water-rich foods and to choose fat-reduced foods as ways to lower the energy density of their diet. The second group, the reduced-fat (RF) group, was counseled with more restrictive messages focusing on eating less fat and limiting portions.

The women in both groups received individual counseling for six months and a follow-up period of six additional months of individual and group counseling. No calorie or fat gram goals were assigned in either group. The women could eat whatever they wanted while following the principles they learned in their counseling sessions. After the first six-month period, the women in the ED group had lost 21 pounds while the women in the RF group had lost only 15 pounds. The women in the ED group also significantly lowered the energy density of their diet versus the RF group but there was no difference in fat intake.

Ello-Martin says, "This is the first long-term study to look at how a low energy density diet can affect body weight. It’s important because it shows that a healthy diet pattern can result in significant weight loss without couting calories or fat grams." Ello-Martin’s co-authors are Liane Roe, research nutritionist, and Rolls. The study was supported by a grant from the National Institute of Diabetes and Digestive and Kidney Disease.

Ledikwe’s co-authors include Rolls and the following nutritional epidemiologists from the Centers for Disease Control and Prevention: Heidi M. Blanck, Laura Kettel Khan, Mary Serdula, Jennifer D. Seymour, and Beth C. Tohill. The study was supported by grants from the National institute of Diabetes and Digestive and Kidney Diseases, and an appointment to the Research Participation Program at the Centers for Disease Control and Prevention, Division of Nutrition and Physical Activity administered by the Oak Ridge Institute for Science and Education.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>