Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To weigh less, eat more

18.11.2004


Two new Penn State studies show that people who pursue a healthy, low-fat, low-energy-density diet that includes more water-rich foods, such as fruits and vegetables, consume more food but weigh less than people who eat a more energy-dense diet.



Dr. Barbara Rolls, who holds the Guthrie Chair of Nutrition in Penn State’s College of Health and Human Development, directed the studies. She says, "In one of the studies, we looked at the eating patterns of 7,500 men and women who constituted a representative sample of American adults. In the other study, 101 obese women were counseled to increase their intake of water-rich foods and to select reduced-fat foods rather than full-fat ones. In both cases eating more low-energy-dense, water-rich foods, such as fruits and vegetables, was associated with lower body weights. "Decreasing the energy density of your diet by choosing more low-energy-dense foods, such as fruits and vegetables, can be a successful strategy to lose weight without counting calories or fat grams," she adds.

Both studies were detailed today, Wednesday, Nov. 17, at the annual meeting of the North American Association for the Study of Obesity in Las Vegas, Nevada.


Dr. Jenny H. Ledikwe, postdoctoral fellow in nutritional epidemiology, conducted the study in which she looked at the diet patterns of 7,500 typical Americans. She calculated the average daily energy density of their intake using two 24-hour recalls from the 1994-96 U.S. Department of Agriculture Continuing Survey of Food Intakes by Individuals. She then compared the participants with low, medium and high energy density (ED) diets.

Ledikwe found that despite the fact that the people in the low energy density group ate a greater weight of food than those in the high energy density group, they consumed fewer calories and weighed less. She notes, "Individuals who ate low-fat, high-fiber diets rich in fruits and vegetables weighed less, consumed more food and had healthier eating patterns."

Julie Ello-Martin, doctoral candidate in nutrition, conducted the study in which women were counseled. In this study, 101 obese women were divided into two groups. One group, the energy density (ED) group, was counseled to eat more water-rich foods and to choose fat-reduced foods as ways to lower the energy density of their diet. The second group, the reduced-fat (RF) group, was counseled with more restrictive messages focusing on eating less fat and limiting portions.

The women in both groups received individual counseling for six months and a follow-up period of six additional months of individual and group counseling. No calorie or fat gram goals were assigned in either group. The women could eat whatever they wanted while following the principles they learned in their counseling sessions. After the first six-month period, the women in the ED group had lost 21 pounds while the women in the RF group had lost only 15 pounds. The women in the ED group also significantly lowered the energy density of their diet versus the RF group but there was no difference in fat intake.

Ello-Martin says, "This is the first long-term study to look at how a low energy density diet can affect body weight. It’s important because it shows that a healthy diet pattern can result in significant weight loss without couting calories or fat grams." Ello-Martin’s co-authors are Liane Roe, research nutritionist, and Rolls. The study was supported by a grant from the National Institute of Diabetes and Digestive and Kidney Disease.

Ledikwe’s co-authors include Rolls and the following nutritional epidemiologists from the Centers for Disease Control and Prevention: Heidi M. Blanck, Laura Kettel Khan, Mary Serdula, Jennifer D. Seymour, and Beth C. Tohill. The study was supported by grants from the National institute of Diabetes and Digestive and Kidney Diseases, and an appointment to the Research Participation Program at the Centers for Disease Control and Prevention, Division of Nutrition and Physical Activity administered by the Oak Ridge Institute for Science and Education.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>