Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How running made us human

18.11.2004


Humans evolved from ape-like ancestors because they needed to run long distances – perhaps to hunt animals or scavenge carcasses on Africa’s vast savannah – and the ability to run shaped our anatomy, making us look like we do today.



That is the conclusion of a study published in the Nov. 18 issue of the journal Nature by University of Utah biologist Dennis Bramble and Harvard University anthropologist Daniel Lieberman. The study is featured on Nature’s cover.

Bramble and Lieberman argue that our genus, Homo, evolved from more ape-like human ancestors, Australopithecus, 2 million or more years ago because natural selection favored the survival of australopithecines that could run and, over time, favored the perpetuation of human anatomical features that made long-distance running possible. "We are very confident that strong selection for running – which came at the expense of the historical ability to live in trees – was instrumental in the origin of the modern human body form," says Bramble, a professor of biology. "Running has substantially shaped human evolution. Running made us human – at least in an anatomical sense. We think running is one of the most transforming events in human history. We are arguing the emergence of humans is tied to the evolution of running."


That conclusion is contrary to the conventional theory that running simply was a byproduct of the human ability to walk. Bipedalism – the ability to walk upright on two legs – evolved in the ape-like Australopithecus at least 4.5 million years ago while they also retained the ability to travel through the trees. Yet Homo with its "radically transformed body" did not evolve for another 3 million or more years – Homo habilis, Homo erectus and, finally, our species, Homo sapiens – so the ability to walk cannot explain anatomy of the modern human body, Bramble says. "There were 2.5 million to 3 million years of bipedal walking [by australopithecines] without ever looking like a human, so is walking going to be what suddenly transforms the hominid body?" he asks. "We’re saying, no, walking won’t do that, but running will."

Walking cannot explain most of the changes in body form that distinguish Homo from Australopithecus, which – when compared with Homo – had short legs, long forearms, high permanently "shrugged" shoulders, ankles that were not visibly apparent and more muscles connecting the shoulders to the head and neck, Bramble says. If natural selection had not favored running, "we would still look a lot like apes," he adds.

I Run, Therefore I Am

Bramble and Lieberman examined 26 traits of the human body – many also seen in fossils of Homo erectus and some in Homo habilis – that enhanced the ability to run. Only some of them were needed for walking. Traits that aided running include leg and foot tendons and ligaments that act like springs, foot and toe structure that allows efficient use of the feet to push off, shoulders that rotate independently of the head and neck to allow better balance, and skeletal and muscle features that make the human body stronger, more stable and able to run more efficiently without overheating. "We explain the simultaneous emergence of a whole bunch of anatomical features, literally from head to toe," Bramble says. "We have a hypothesis that gives a functional explanation for how these features are linked to the unique mechanical demands of running, how they work together and why they emerged at the same time."

Humans are poor sprinters compared with other running animals, which is partly why many scientists have dismissed running as a factor in human evolution. Human endurance running ability has been inadequately appreciated because of a failure to recognize that "high speed is not always important," Bramble says. "What is important is combining reasonable speed with exceptional endurance." Another reason is that "scientists are in developed societies that are highly dependent on technology and artificial means of transport," he adds. "But if those scientists had been embedded in a hunter-gatherer society, they’d have a different view of human locomotor abilities, including running."

Why Did Humans Start Running?

The researchers do not know why natural selection favored human ancestors who could run long distances. For one possibility, they cite previous research by University of Utah biologist David Carrier, who hypothesized that endurance running evolved in human ancestors so they could pursue predators long before the development of bows, arrows, nets and spear-throwers reduced the need to run long distances. Another possibility is that early humans and their immediate ancestors ran to scavenge carcasses of dead animals – maybe so they could beat hyenas or other scavengers to dinner, or maybe to "get to the leftovers soon enough," Bramble says.

Scavenging "is a more reliable source of food" than hunting, he adds. "If you are out in the African savannah and see a column of vultures on the horizon, the chance of there being a fresh carcass underneath the vultures is about 100 percent. If you are going to hunt down something in the heat, that’s a lot more work and the payoffs are less reliable" because the animal you are hunting often is "faster than you are."

Anatomical Features that Help Humans Run

Here are anatomical characteristics that are unique to humans and that play a role in helping people run, according to the study:

  • Skull features that help prevent overheating during running. As sweat evaporates from the scalp, forehead and face, the evaporation cools blood draining from the head. Veins carrying that cooled blood pass near the carotid arteries, thus helping cool blood flowing through the carotids to the brain.
  • A more balanced head with a flatter face, smaller teeth and short snout, compared with australopithecines. That "shifts the center of mass back so it’s easier to balance your head when you are bobbing up and down running," Bramble says.
  • A ligament that runs from the back of the skull and neck down to the thoracic vertebrae, and acts as a shock absorber and helps the arms and shoulders counterbalance the head during running.
  • Unlike apes and australopithecines, the shoulders in early humans were "decoupled" from the head and neck, allowing the body to rotate while the head aims forward during running.
  • The tall human body – with a narrow trunk, waist and pelvis – creates more skin surface for our size, permitting greater cooling during running. It also lets the upper and lower body move independently, "which allows you to use your upper body to counteract the twisting forces from your swinging legs," Bramble says.
  • Shorter forearms in humans make it easier for the upper body to counterbalance the lower body during running. They also reduce the amount of muscle power needed to keep the arms flexed when running.
  • Human vertebrae and disks are larger in diameter relative to body mass than are those in apes or australopithecines. "This is related to shock absorption," says Bramble. "It allows the back to take bigger loads when human runners hit the ground."
  • The connection between the pelvis and spine is stronger and larger relative to body size in humans than in their ancestors, providing more stability and shock absorption during running.
  • Human buttocks "are huge," says Bramble. "Have you ever looked at an ape? They have no buns." He says human buttocks "are muscles critical for stabilization in running" because they connect the femur – the large bone in each upper leg – to the trunk. Because people lean forward at the hip during running, the buttocks "keep you from pitching over on your nose each time a foot hits the ground."
  • Long legs, which chimps and australopithecines lack, let humans to take huge strides when running, Bramble says. So do ligaments and tendons – including the long Achilles tendon – which act like springs that store and release mechanical energy during running. The tendons and ligaments also mean human lower legs that are less muscular and lighter, requiring less energy to move them during running.
  • Larger surface areas in the hip, knee and ankle joints, for improved shock absorption during running by spreading out the forces.
  • The arrangement of bones in the human foot creates a stable or stiff arch that makes the whole foot more rigid, so the human runner can push off the ground more efficiently and utilize ligaments on the bottom of the feet as springs.
  • Humans also evolved with an enlarged heel bone for better shock absorption, as well as shorter toes and a big toe that is fully drawn in toward the other toes for better pushing off during running.

The study by Bramble and Lieberman concludes: "Today, endurance running is primarily a form of exercise and recreation, but its roots may be as ancient as the origin of the human genus, and its demands a major contributing factor to the human body form."

Prof. Dennis Bramble | EurekAlert!
Further information:
http://www.utah.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>