Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sperm enzyme is essential for male fertility

16.11.2004


Findings may have implications for contraceptive

A study led by scientists at the University of North Carolina at Chapel Hill has determined that a novel enzyme in sperm is essential for sperm motility and male fertility. The new study may offer a potential target for an effective, non-hormonal male contraceptive, the researchers said. The findings will be published today (Nov. 15) in the online early edition of the journal Proceedings of the National Academy of Sciences. A report also will appear Nov. 23 in the journal’s print edition. Collaborating with UNC were scientists from the U.S. National Institute of Environmental Health Sciences (NIEHS); Fudan University in Shanghai, China; and the U.S. Environmental Protection Agency.

Sperm motility, produced by the coordinated movement of the extremely long sperm tail, requires substantial energy in the form of adenosine triphosphate, or ATP, the major energy currency of the cell. Specialized cellular structures known as mitochondria were thought to provide a substantial portion of the ATP needed for sperm motility. In contrast, Dr. Deborah A. O’Brien, associate professor of cell and developmental biology at UNC’s School of Medicine, and her colleagues found that sperm motility and ATP production depend primarily on a metabolic pathway known as glycolysis. This pathway uses sugar to produce energy, a common process in animal and plant cells.



The researchers focused on the enzyme glyceraldehyde 3-phosphate dehydrogenase-S, or GAPDS, a novel enzyme in the glycolytic pathway that is expressed only in germ cells very late in the process of sperm production. GAPDS is tightly bound to a structural element that extends along most of the length of the sperm tail. The study team used gene targeting, or gene knockout technology, to produce mice that could not make this unique enzyme.

Without GAPDS, glycolysis is selectively blocked in sperm and this pathway produces no ATP. As expected, the females were normal and the males had normal testes and sperm counts, but they were infertile, O’Brien said. And when the researchers analyzed sperm movement under a microscope, they found a surprise. "We expected that a type of motility known as ’hyperactivated motility’ would be inhibited, but found that all progressive movement was absent in sperm without GAPDS," O’Brien said. "Glycolysis may not be as efficient as mitochondria for producing energy, but the enzymes are abundant and in the right place for quick, localized energy production along the sperm tail. This paper provides proof of principle that GAPDS may be an effective target for a contraceptive agent."
Co-authors with O’Brien are Dr. Kiyoshi Miki, research assistant professor in cell and developmental biology; Dr. Weidong Qu, postdoctoral researcher at UNC and associate professor at Fudan University; Eugenia Goulding and William Willis, research technicians at the NIEHS; Dr. Donna Bunch, assistant professor of medicine at UNC; Lillian Strader, research technician at the EPA; Dr. Sally Perreault, chief, gamete and early embryo biology branch at the EPA; and Dr. Edward M. Eddy, who heads the gamete biology section at the NIEHS.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>