Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sperm enzyme is essential for male fertility

16.11.2004


Findings may have implications for contraceptive

A study led by scientists at the University of North Carolina at Chapel Hill has determined that a novel enzyme in sperm is essential for sperm motility and male fertility. The new study may offer a potential target for an effective, non-hormonal male contraceptive, the researchers said. The findings will be published today (Nov. 15) in the online early edition of the journal Proceedings of the National Academy of Sciences. A report also will appear Nov. 23 in the journal’s print edition. Collaborating with UNC were scientists from the U.S. National Institute of Environmental Health Sciences (NIEHS); Fudan University in Shanghai, China; and the U.S. Environmental Protection Agency.

Sperm motility, produced by the coordinated movement of the extremely long sperm tail, requires substantial energy in the form of adenosine triphosphate, or ATP, the major energy currency of the cell. Specialized cellular structures known as mitochondria were thought to provide a substantial portion of the ATP needed for sperm motility. In contrast, Dr. Deborah A. O’Brien, associate professor of cell and developmental biology at UNC’s School of Medicine, and her colleagues found that sperm motility and ATP production depend primarily on a metabolic pathway known as glycolysis. This pathway uses sugar to produce energy, a common process in animal and plant cells.



The researchers focused on the enzyme glyceraldehyde 3-phosphate dehydrogenase-S, or GAPDS, a novel enzyme in the glycolytic pathway that is expressed only in germ cells very late in the process of sperm production. GAPDS is tightly bound to a structural element that extends along most of the length of the sperm tail. The study team used gene targeting, or gene knockout technology, to produce mice that could not make this unique enzyme.

Without GAPDS, glycolysis is selectively blocked in sperm and this pathway produces no ATP. As expected, the females were normal and the males had normal testes and sperm counts, but they were infertile, O’Brien said. And when the researchers analyzed sperm movement under a microscope, they found a surprise. "We expected that a type of motility known as ’hyperactivated motility’ would be inhibited, but found that all progressive movement was absent in sperm without GAPDS," O’Brien said. "Glycolysis may not be as efficient as mitochondria for producing energy, but the enzymes are abundant and in the right place for quick, localized energy production along the sperm tail. This paper provides proof of principle that GAPDS may be an effective target for a contraceptive agent."
Co-authors with O’Brien are Dr. Kiyoshi Miki, research assistant professor in cell and developmental biology; Dr. Weidong Qu, postdoctoral researcher at UNC and associate professor at Fudan University; Eugenia Goulding and William Willis, research technicians at the NIEHS; Dr. Donna Bunch, assistant professor of medicine at UNC; Lillian Strader, research technician at the EPA; Dr. Sally Perreault, chief, gamete and early embryo biology branch at the EPA; and Dr. Edward M. Eddy, who heads the gamete biology section at the NIEHS.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>