Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sperm enzyme is essential for male fertility

16.11.2004


Findings may have implications for contraceptive

A study led by scientists at the University of North Carolina at Chapel Hill has determined that a novel enzyme in sperm is essential for sperm motility and male fertility. The new study may offer a potential target for an effective, non-hormonal male contraceptive, the researchers said. The findings will be published today (Nov. 15) in the online early edition of the journal Proceedings of the National Academy of Sciences. A report also will appear Nov. 23 in the journal’s print edition. Collaborating with UNC were scientists from the U.S. National Institute of Environmental Health Sciences (NIEHS); Fudan University in Shanghai, China; and the U.S. Environmental Protection Agency.

Sperm motility, produced by the coordinated movement of the extremely long sperm tail, requires substantial energy in the form of adenosine triphosphate, or ATP, the major energy currency of the cell. Specialized cellular structures known as mitochondria were thought to provide a substantial portion of the ATP needed for sperm motility. In contrast, Dr. Deborah A. O’Brien, associate professor of cell and developmental biology at UNC’s School of Medicine, and her colleagues found that sperm motility and ATP production depend primarily on a metabolic pathway known as glycolysis. This pathway uses sugar to produce energy, a common process in animal and plant cells.



The researchers focused on the enzyme glyceraldehyde 3-phosphate dehydrogenase-S, or GAPDS, a novel enzyme in the glycolytic pathway that is expressed only in germ cells very late in the process of sperm production. GAPDS is tightly bound to a structural element that extends along most of the length of the sperm tail. The study team used gene targeting, or gene knockout technology, to produce mice that could not make this unique enzyme.

Without GAPDS, glycolysis is selectively blocked in sperm and this pathway produces no ATP. As expected, the females were normal and the males had normal testes and sperm counts, but they were infertile, O’Brien said. And when the researchers analyzed sperm movement under a microscope, they found a surprise. "We expected that a type of motility known as ’hyperactivated motility’ would be inhibited, but found that all progressive movement was absent in sperm without GAPDS," O’Brien said. "Glycolysis may not be as efficient as mitochondria for producing energy, but the enzymes are abundant and in the right place for quick, localized energy production along the sperm tail. This paper provides proof of principle that GAPDS may be an effective target for a contraceptive agent."
Co-authors with O’Brien are Dr. Kiyoshi Miki, research assistant professor in cell and developmental biology; Dr. Weidong Qu, postdoctoral researcher at UNC and associate professor at Fudan University; Eugenia Goulding and William Willis, research technicians at the NIEHS; Dr. Donna Bunch, assistant professor of medicine at UNC; Lillian Strader, research technician at the EPA; Dr. Sally Perreault, chief, gamete and early embryo biology branch at the EPA; and Dr. Edward M. Eddy, who heads the gamete biology section at the NIEHS.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>